
DTIC FILE COpy

NAVAL POSTGRADUATE SCHOOL
N

CD Monterey, California

N

THESIS U

TURBO PASCAL IMPL=UATION OF A DISTRIBUTED
PROCESSING NEIWORK OF MS-DOS MICROCCXMPUTEPS
CONNECTED IN A MASTER-SLAVE CONFIGURATION

by

NIELSON C. ARD

DECEMBER 1989

Thesis Advisor: Uno R. Kodres

Approved for public release; distribution is unlimited

.0 07 3 208

Unclassified
SECURITY CLASSjF,CAT ONI OF THIS PAGE

7F7rm Approved

REPORT DOCUMENTATION PAGE OMBNo 0704-0188

la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified Unrestrict Ad
2a SECURITY CLASSIFICATlON AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSIFICATION DOWNGRADING SCHEDULE Approved for public release; distribution

is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NuMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATON
(If applicable)

Naval Postgraduate School 52
6c. ADDRESS (City. State, and ZIP Code) 7b ADDRESS (City. State. and ZIP Code)

Monterey, CA 93943-5000

Ba NAME OF FUNDING :SPONSORING Bb OFFCE SYMBOL 9 PROCUREMENT INSTRUMENT iDENTIcICAhO.% NUMBER
ORGANIZATION (If applicable)

8c ADDRESS (City, State, and ZIP Code) 10 SOJRCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

1 1 TITLE (Include Security Classification)
TURBO PASCAL IMPLUmNATION OF A DISTRIBUTED PROCESSING NEIWRK OF MS-DOS MICR TERS
ONNCTE IN A MASTER-SLAVE CONFIGURATION
12 PERSONAL AJTHOR(S)

Ard, Nelson C.
13a TYPE OF REPcRT "3b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) ' PACE COU*N

-

Master's Thesis ;ROM _ TO Decemer 1989 308

16 SUPPEMENIARV NOTATION The views expressed in this thesis are those of the author and do

not reflect the official policy or position of the Department of Defense or the U.S.

7 COSA'i CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identif) by block number)

FIELD GROUP SUB-GROU
P Distributed Processing, Local Area Network, Star Network,

Turbo Pascal

ABSTRACT (Continue on reverse if necessary and identify by block number)
This thesis describes the design and implementation of a distributed processing network

of IBM PC compatible coimputers capable of performing parallel processing tasks. The
network is a star cluster local area network, with the central caputer controlling the
operations of the satellite computers on a sequential basis.

The local area network software operates over the conputer's standard RS-232C canmi-
cations ports, and is currently implemented to allow the central caputer to operate two
satellite carputers. Processing tasks are dispatched to the satellite canputers as
programs which run to completion on the satellite ccmputers. Utility programs within the
software include file and message transfer to start the programs on the satellite
canputers and to obtain the output of the remotely executed program, configuration
utilities to set the communications port parameters, and windowing utilities for display
of information normally presented on the remote camputer's display. The program is
implented in Turbo Pascal 4.0 under the MS-DOS operating system, version 3.21.
20 DSTR!BUTO% A.A _49 _Y OF 4BS7RCT 21 ABSTRACT SECUR Tv CASS,- CAT0'1.

[.;rCLSS-,EDJ!I-,V -ED 0 SAf.'E AS RD' [DTC USERS Unclassified
22a NAVE OP RESPOS BE 'VD;V'0,A n(include Area Code) 2,(Oi,CE SYMBK)

Professor Uno Kodres _ (408) 646-2197 52Kr

DD Form 1473, JUN 86, - Previous editions are obsolete _ SECi: V C IS' C4,7 c% C,- T.-
2. CE

S/N 01()2-TF-n1-6603 Unclassified" J

Approved for public release; distribution is unlimited.

Turbo Pascal Implementation of a Distributed Processing Network of
MS-DOS Microcomputers Connected in a Master-Slave Configuration

by

Nelson C. Ard
B.S., Virginia Polytechnic Institute and State University, 1974

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

DECEMMER 1989

Author: iA . .
Nelson C. Ard"\

Approved By:A/
Uno R. Kodres, Thesis Advisor

/ G. M.L Second Reader

robert G. McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

This thesis describes the design and implementation of a

distributed processing network of IBM PC compatible computers capable

of performing parallel processing tasks. The network is a star cluster

local area network, with the central computer controlling the

operations of the satellite computers on a sequential basis.

The local area network software operates over the computer's

standard RS-232C communications ports, and is currently implemented to

allow the central computer to operate two satellite computers.

Processing tasks are dispatched to the satellite computers as programs

which run to completion on the satellite computers. Utility programs

within the software include file and message transfer to start the

programs on the satellite computers and to obtain the output of the

remotely executed program, configuration utilities to set the

communications port parameters, and windowing utilities for display of

information normally presented on the remote computer's display. The

program is implemented in Turbo Pascal 4.0 under the MS-DOS operating

system, version 3.21. Accession For
NTIS GRA&I
DTIC TAB
Unannounced El
Justificatio

By _
Distr

Av211. ,; Codes

-it - -Io

iii 'l~ ____

DISCLAIMER

The views expressed in this thesis are those of the author and do

not reflect the official policy or position of the Department of

Defense or the U.S. Government.

Several of the terms used in this thesis refer to commercial

products for which the manufacturer or vendor holds a trademark. All

registered trademarks appearing in this thesis are cited below with the

firm holding the trademark in lieu of citing the holder with each

individual occurance of the trademark.

Bell Laboratories, Murray Hill, New Jersey
UNIX Operating System

Board of Regents, University of California at San Diego (USCD), San
Diego, California

UCSD Pascal Programming Language

Borland International, Incorporated, Scotts Valley, California
Turbo Pascal Programming Language

Digital Research Incorporated, Pacific Grove, California
Control Program/Microprocessor (CP/M) Operating System

International Business Machines Corporation, Boca Raton, Florida
IBM PC Personal Computer
IBM PC/AT Personal Computer

Microsoft Corporation, Bellvue, Washington
Microsoft Disk Operating System (MS-DOS)

RE Software Incorporated, Madison, Wisconson
JANUS/Ada Programming Language

United States Department of Defense
Ada Programming Language

Zenith Data Systems Corporation, St. Josephs, Michigan
Z-248 Personal Computer

iv

TABLE OF CONTENTS

I. INTRODUCTION ... 1

A. BACKGROUND .. 1

B. PROJECT DESCRIPTION 1

1. Target Hardware 1

2. Network Topology 2

3. Network Media 2

4 . Software ... 2

a. Operating System 2

b. Programming Language 2

5. Proposed Capabilities 2

a. File Transfer 2

b. Distributed Processing 2

c. Control of Multiple Slave Microcomputers 3

d. Remote Login 3

e. Error Handling 3

C. STRUCTURE OF THE THESIS 3

II. HARDWARE ... 5

A. THE IBM PC/AT PERSONAL COMPUTER 5

1. The Central Processor Unit 5

2. Interrupts 7

3. Communications Ports 8

4. Programmable Interrupt Controller (PIC) 10

V

III. THE OPERATING SYSTEM 12

A. BACKGROUND .. 12

B. CHILD PROCESSES 14

1. Program Segment Prefix 14

a. Interrupts to be Restored on Program

Termination 15

b. The Environment Segment Address 15

c. File Handle Table 16

d. Redirection 17

C. PROGRAM TERMINATION 19

IV. THE PROGRAMMING LANGUAGE 20

A . JANUS ADA ... 21

1. Memory Size Limitations of Compiled Code 21

2. Failure of the Child Process Call 23

3. Need for a Replacement Language 25

B. TURBO PASCAL .. 25

1. Information Hiding 26

2. Support for Child Processes 26

3. Data Abstraction 26

4. Unit Initialization 27

5. Unit Exit Procedures 27

6. Absolute Variables 27

7. File Input and Output 27

8. Port Read/Write 28

9. Interrupt Service Routines 28

10. Exception Handling 28

vi

11. High Level Software Interrupt Procedure 28

12. ROM BIOS and Hardware Interrupt Procedures 29

13. Support for a Larger Memory Model 29

C. IMPLEMENTATION .. 29

V. THE IMPLEMENTATION ... 30

A. THE HARDWARE CONFIGURATION 30

B. SOFTWARE CONFIGURATION .N.............................. 31

1. The Operating System 31

2. The Distributed Processing Program 31

3. ZCOPY File Transfer Program 32

4. Software Maintenance 32

a. Configuration 32

b. Software Modification 32

C. SYSTEMS DESIGN .. 32

1. The Command Parser 33

2. The Execution of Child Processes 33

a. Internal Commands 34

b. External (Executable) Commands 35

3. Redirection 35

4. File and Command Transfer via Xmodem 36

5. Serial Communications 37

6. Man Machine Interface 37

D. DESIGN CONSIDERATIONS 38

1. Assembly Language 38

2. ROM BIOS Software Interrupts 38

3. Memory Management 38

vii

4. Synchronization 39

5. Modular Programming 39

6. Preservation of Interrupt Vectors on Program

Termination 40

E. SYSTEM EXECUTION 40

1. Initialization 40

2. Slave Operation 41

3. Master Operation 41

a. Terminal Operations 42

b. Port Initialization 43

c. Remote Login to Slave 43

d. Remote Program Execution 43

e. Flow Control 44

f. Remote Reset 44

g. File Transfer 44

F. THE MODULES ... 45

1. D istr ib .. 45

2. DataCom .. 45

3 . Director ... 45

4. ErrorCod ... 46

5. General .. 46

6 . MiscPack ... 46

7 . Parser ... 46

8 . Redirect ... 47

9 . Spawn .. 47

10 . Support .. 47

viii

11. Wndow .. 47

12 . Xmodm .. 48

VI. CONCLUSIONS 49

APPENDIX A OPERATOR'S MANUAL 51

APPENDIX B INSTALLATION/PROGRAMMING AIDS 58

APPENDIX C XMODEM PROTOCOL 64

APPENDIX D MAINTENANCE MANUAL FOR DISTRIB PROGRAM 69

APPENDIX E MAINTENANCE MANUAL FOR UNIT DATACOM 81

APPENDIX F MAINTENANCE MANUAL FOR UNIT DIRECTOR 93

APPENDIX G MAINTENANCE MANUAL FOR UNIT ERRORCOD 96

APPENDIX H MAINTENANCE MANUAL FOR UNIT GENERAL 97

APPENDIX I MAINTENANCE MANUAL FOR UNIT MISCPACK 100

APPENDIX J MAINTENANCE MANUAL FOR UNIT PARSER 101

APPENDIX K MAINTENANCE MANUAL FOR UNIT REDIRECT 106

APPENDIX L MAINTENANCE MANUAL FOR UNIT SPAWN ill

APPENDIX M MAINTENANCE MANUAL FOR UNIT SUPPORT 114

APPENDIX N MAINTENANCE MANUAL FOR UNIT WNDOW 120

APPENDIX 0 MAINTENANCE MANUAL FOR UNIT XMODM 126

APPENDIX P SOURCE LISTING FOR UNIT DATACOM 136

APPENDIX Q SOURCE LISTING FOR UNIT DIRECTOR 156

APPENDIX R SOURCE LISTING FOR UNIT ERRORCOD 162

APPENDIX S SOURCE LISTING FOR UNIT GENERAL 166

APPENDIX T SOURCE LISTING FOR UNIT MISCPACK 171

APPENDIX U SOURCE LISTING FOR UNIT PARSER 174

APPENDIX V SOURCE LISTING FOR UNIT REDIRECT 186

APPENDIX W SOURCE LISTING FOR UNIT SPAWN 196

ix

APPENDIX X SOURCE LISTING FOR UNIT SUPPORT 203

APPENDIX Y SOURCE LISTING FOR UNIT WNDOW 226

APPENDIX Z SOURCE LISTING FOR UNIT XMODM 243

APPENDIX AA SOURCE LISTING FOR PROGRAM DISTRIB 270

APPENDIX AB CONFIGURATION FILE STRUCTURE 301

APPENDIX AC DOCUMENTATION FOR ZCOPY PROGRAM 302

LIST OF REFERENCES ... 304

INITIAL DISTRIBUTION LIST .. 306

ACKNOWLEDGENTS

Special mention is due to the following individuals who provided

solutions to some of the technical problems encountered in the

implementation of this thesis, as well as their kind permission to

reprint their work as program excerpts used in the thesis.

Diplomate Physics Christian Boettger
Institut fuer Metallphysik und Nuklear Festkoerperphysik der
Technichen Universitaet Braunschweig

Bundesrepublik Deutschland (West Germany) FRG

Reino R. A. de Boer
Erasmus Universiteir Rotterdam
The Netherlands

Naoto Kimura
California State University, Northridge (CSUN)

Alexander Verbraeck
Delft University of Technology
Department of Information Systems
The Netherlands

My greatest thanks are due, of course, to my wife Michelle for her

loving support during this entire process.

xi

I. INTRODUCTION

A. BACKGROUND

Many designs for local area networks are currently available on the

commercial market, however, all are designed to provide for sharing of

high performance centralized assets such as file servers or relatively

scarce resources such as specialized printers; or for the movement of

data and files. None are known to provide a distributed processing

capability by using the inherent capabilities of the attached

microcomputers or processors under the control of a :entral master

computer.

The purpose of this thesis is to demonstrate such a capability in a

laboratory environment, utilizing a network of slave or server

microcomputers capable of running separate applications programs under

the control of a central or master microcomputer.

B. PROJECT DESCRIPTION

1. Target Hardware

The proposed demonstration network consists of a single master

IB! PC compatible microcomputer connected to two IBM PC or IBM PC/AT

compatible slave microcomputers under the operational control of the

central master.

2. Network Topology

The proposed demonstration network is a small star network,

with the master microcomputer as the central node.

3. Network Media

The proposed networking media shall be the standard RS-232C

serial communications port provided with each microcomputer. The

central microcomputer is augmented with a second RS-232C serial port to

allow independent communications with both slaves.

4. Software

a. Operating System

The operating system selected for the microcomputers

shall be Microsoft MS-DOS, version 3.0 or later, as supplied with each

microcomputer.

b. Programming Language

All applications software for the microcomputer control

programs was originally intended to be written in RR Software Inc.

Janlus!ADA. The actual implementation is in Borland Turbo Pascal,

version 4.0.

5. Proposed Capabilities

a. File Transfer

The master microcomputer shall be able to initiate

program and data file transfers to and from any of the connected slave

microcomputers.

b. Distributed Processing

The mastee microcomputer shall be able to command the

exfeZultio 0 selected programs resident on any slave microcomputer,

receive an acknowledgment of the command from the slave, and receive

the text output of the selected program after execution.

c. Control of Multiple Slave Microcomputers

The master microcomputer shall be able to control more

than one slave microcomputer.

d. Remote Login

The master microcomputer shall be able to remotely log in

to any slave microcomputer and operate it remotely over the

communications network.

e. Error Handling

The master and slave microcomputers shall attempt to

restore communications to resume control in the event of a fault.

C. STRUCTURE OF THE THESIS

Since standardized microcomputers and operating systems were

selected, the majority of this thesis consists of the programming

effort to create the network control programs, and the source code for

those programs. What follows will describe the design considerations

predicated by the choice of hardware, operating system and programming

languages: a description of the significant problems encountered; and

instructions for duplicating the network along with program operation

and maintenance.

Chapter II will describe the programmer's model of the hardware

utilized in the microcomputers and interrupt driven serial

communication considerations. Chapter III will discuss the essential

features of the operating system as they contributed to the thesis.

Chapter IV will describe the salient features of the two programming

languages considered, and the reasons for selecting a replacement for

Janus/ADA. Chapter V will discuss the implementation from a systems

viewpoint with a brief description of each software module. Chapter VI

summarizes the conclusions reached from this thesis.

The appendices provide detailed descriptions of the program source

code, the source listings, an operator's manual, a guide to program

maintenance, and the bibliography.

4

II. HARDWARE

A. THE IBM PC/AT PERSONAL COMPUTER

The IBM PC/AT personal computer and its close compatibles, such as

the Zenith Z-248 adopted as the standard Navy desktop personal

computer, were selected as the target hardware for both program

development and application. These computers are general purpose, and

typically have at least 640K of random access memory for operating

system and program execution, one or more floppy disk drives handling

-1/4 inch diskettes with 360K bytes of storage each, a hard disk drive

holding from ten to twenty megabytes of storage, and a monochrome or

color monitor displaying SO characters by 24 lines of text. One

RS-232C serial interface is standard, and a second is optional. The

computer also comes with a parallel printer port. The following

hardware features are of interest to aid in understanding the software

developed: (Norton, 1985, pp. 19 - 65)

1. The Central Processor Unit

The programming model of Table 2.1 is common to the Intel

8088, 8086 and 80x86 series of microprocessors used in the IBM PC/AT

compatibles. This information is not provided to support assembly

language programming (there is very little in this implementation), but

for interface considerations to control, read from, write to, or obtain

the status of the IBM PC hardware in support of the distributed

processing network. The usage of specific registers for software

interrupts is defined *by calling conventions similar to the formal

parameter declarations for procedures and functions in higher level

languages such as ADA.

TABLE 2.1

MICROPROCESSOR REGISTERS

Register Type Function

Scratch Pad Registers: Arithmetic and data transfer

AX Accumulator Arithmetic operations
BX Base Table pointer
CX Counter Repetition loop
DX General General purpose

The above registers may also be addressed as eight bit pairs, i.e.,
register AX may also be utilized as AL and AH for the low and high
order bits.

Segment Registers: Separate code, data, stack and an
extra segment

CS Code Segment Locates the code segment in memory
DS Data Segment Locates the data segment in memory
"SS Stack Segment Locates the stack segment in memory
ES Extra Segment Intersegment transfers

Index Registers: Relative offset from a segment
register

IP Instruction Points to next instruction to be
Pointer executed

SP Stack Pointer Points to next available location on
stack

BF Base Pointer Offset into the stack segment
DI Destination Inde.< String data transfers
SI Source Index String data transfers

Control Functions:

Flags Flag Register Used to record processor status

information

6

2. Interrupts

Interrupts serve two functions in the IBM PC: hardware

interrupts allow a peripheral to request servicing from the CPU, and

software interrupts allow the operating system or applications software

to obtain services from the hardware. Software interrupts are

generated by a machine instruction. In either case, a software or

firmware interrupt service routine must be called to process the

request. The originator of the interrupt does not need to know the

address of the routine that accomplishes the service, since the IBM PC

incorporates a powerful feature designed to minimize limitations in the

inherent design. A level of indirection is designed into the interrupt

architecture of the microcomputer that facilitates redefining the

interrupt service routines without rewiring the hardware or changing

;irmware. This is accomplished throLIgh a table of interrupt vectors

reserved at the first 1024 bytes of system memory. Each of the 256

vector locations is a four byte pointer initialized to point to a

specific function by its location in the table. These functions

support hardware and software interrupts generated by the CPU (for

fault processing), the hardware (for peripheral service), or the

operating system or application program (for higher level services).

Control is passed to an interrupt service routine by utilizing the

vector at the location assigned to that function to call the service

routine. By reassigning these vectors through the operating system,

the interrupt service routines normally found in the microcomputer

firmware may be substituted by another portion of ROM, the operating

systeT or the application program itself.

-7

As an example, the dynamic assignment of interrupt services

was utilized to obtain interrupt driven character receive functions in

the distributed processing network. Two hardware interrupt vectors

pointing to interrupt service routines for the communications ports are

assigned to the interrupt vector table at offset SOB for port two

(logical port COM2), and at offset $OC for port one (logical port

COMI). The distributed processing program developed for this thesis

reassigns the indicated vectors to point to interrupt service routines

contained in the thesis program itself. These vectors are restored to

their previous values on program termination. (Edwards, 1987, p. 195)

3. Communications Ports

The IBM PC is inherently capable of handling up to seven

communications ports, but typically is fitted with only two at

standardized hardware addresses: logical ports COM1 and COM2. These

are capable of data rates ranging from 110 to 38,400 baud; however the

microcomputer ROM Basic Input Output System (BIOS) servicing the ports

is only capable of setting speeds up to 9600 baud through service

interrupt $14. This service interrupt was also replaced by the

application program to set the ports and achieve a finer degree of

control over their operation than afforded by the BIOS or the operating

system. Table 2.2 is correct for an IBM PC (or Zenith Z-248) fitted

with two ports (Edwards, 1987, p. 231):

8

TABLE 2.2

COMMUNICATIONS PORT ADDRESSES

COM1/COM2
Register Address Function

Transmit Holding $3F8/$2F8 Contains the 8-bit character to be
transmitted by the port. This is a
write only register.

Receive Buffer $3F6/$2F8 Contains the byte most recently
received by the port. This is a read
only register.

Interrupt Enable $3F9/$2F9 A 4-bit register that enables the
serial port to generate interrupts to

the computer when any of the

following events occurs.

Bit 0: Interrupt when data are

available to be received.
Bit 1: Interrupt when the transmit

holding register is empty.
Bit 2: Interrupt when the line

status register changes
state.

Bit 3: Interrupt when the modem
status register changes
state.

Line Status $3FD/$2FD Provides information about the status
of data transfer.
Bit 0: Data ready to be received.

Bit 1: Overrun error
Bit 2: Parity error
Bit 3: Framing error
Bit 4: Break detected on the line
Bit 5: Transmit holding register is

empty
Bit 6: Transmit shift register is

empty
Bit 7: Always zero

Modem Status $3FE/$2FE Contains the status of the modem
signals
Bit 0: Delta clear to send
Bit 1: Delta data set ready

Bit 2: Trailing edge ring indicator
Bit 3: Delta line signal detect
Bit 4: Data set ready

Bit 5: Data set ready
Bit 6: Ring indicator
Bit 7: Receive line signal detect

Line control $3FB/$2FB Used to configure the data
communications parameters.

Bits 0 - 1: Word length (bits):
0 =5
1=6
2 =7
3=8

Bit 2: Stop bits:
0=1
1=2

Bit 3: Enable parity
Bit 4: Select even parity
Bit 5: Mark/space parity select
Bit 6: Generate BREAK signal
Bit 7: Divisor latch access

Modem control $3FC/$2FC Allows access to the signals used to
communicate with a modem
Bit 0: Data terminal ready
Bit 1: Request to send
Bit 2: Outl
Bit 7: Out2. Must be set to enable

UART interrupts
Bit 4: Loopback

4. Programmable Interrupt Controller (PIC)

Another programming requirement involved enabling the IBM PC

hardware to recognize receive character interrupts generated by the two

UARTs. All hardware interrupts are prioritized for the CPU by a device

called the Programmable Interrupt Controller. The Intel 8259

Programmable Interrupt Controller is capable of prioritizing up to

eight interrupts, identified as IRQO0 through IRQ7, with IRGO being

assigned the highest (preemptive) priority. The programming

requirements are to set the appropriate mask bits in the Interrupt Mask.

Register of the PIC, and to send an End Of Interrupt command to the

device following completion of the interrupt service routine supplied

1 C)

by the thesis program. Communications port one is assigned interrupt

vector IRQ3 (bit 3), and communications port two has IRQ4 (bit 4). The

8259 can be instructed to recognize or ignore interrupts from a

peripheral by clearing or setting the appropriate bit in the Interrupt

Mask Register located at I/O port $21, and this feature was utilized to

disable ports when not in use. End Of Interrupt commands are sent to

I/O port $20. This relationship is summarized below (Greenberg, 1987,

pp. 46-50):

TABLE 2.3

PROGRAMMABLE INTERRUPT CONTROLLER ADDRESSES

Register Address Function

Interrupt Mask $21 Contains the mask for the currently
enabled interrupts (read/write)
Bit 3: IR03 - Com port 2 mask.

Clear to enable the port
interrupts

Bit 4, IRQ4 - Com port I mask.
Clear to enable the port
interrupts

In Service $20 Write to the same bit as enabled in
the Interrupt Mask register to clear
the interrupt.

11

III. THE OPERATING SYSTEM

Microsoft MS-DOS version 3.21 was provided with the microcomputers

used in this thesis, and provides the traditional functions expected in

an operating system: high level interface for applications programs,

file services, memory management, and input/output services (MS-DOS

Reference Guide, 1986, pp. 2.3 - 2.9). The use of a standard operating

system was desirable, as it allowed a piece of "trusted" software to be

utilized fo- most of the distributed processing functions while

providing a familiar environment for the operator. Certain extensions

to the operating system were constructed in software, to facilitate the

execution of programs on the microcomputers and to complement the

extensions in hardware services discussed earlier. These are discussed

bel ow.

A. BACKGROUND

MS-DOS interfaces directly with the hardware implementation

dependent portion o; the IBM PC compatible microcomputer, the ROM Basic

Input Output System (BIOS). Recall that this BIOS provides a logical

interface and some low level services for the underlying hardware,

including the disk drives, serial communications ports, keyboard and

video display. The ROM BIOS also accomplishes the initialization of

the IBM PC on power up. The ROM BIOS services remain available to the

programmer through interrupt service calls. (Norton, 1985, pp. 44 -

45'

12

The portion of MS-DOS that interfaces with the ROM BIOS is

contained in a file called IO.SYS, located on the media supplied with

the operating system. This file contains extensions and in some cases

replacements to the ROM BIOS services supplied with the computer such

as device drivers for mouse input devices or specialized video displays

not available when the design for IBM PC compatibles was standardized.

On initialization, IO.SYS substitutes the replacement interrupt service

routines for the existing ROM BIOS services by simply changing the

interrupt table vectors to point to the new routines in memory. This

facility allows the manufacturer to tailor a standard operating system

to various hardware manufacturer's microcomputers. A caution on the

means to change these interrupt vectors is noted below. (MS-DOS

Reference Guide, 1986, pp. 2.5 - 2.6)

The nei!t file loaded is MSDOS.SYS, which provides hardware

independent services 4or the operating system, i.e., high level

interface for file services, memory management, and input/output

services. This portion includes the handler for a class of service

requests, called DOS function requests, utllized in the distributed

processing program to load and execute programs external to the

operating system and input/output redirection to implement the

capabilities cited in Chapter 1. (MS-DOS Reference Guide, 1966,

pp. 2.4 - 2.5,

The last portion of the operating system loaded is COMMAND.COM,

which builds on the previous layers to provide the familiar command

line interpreter and MS-DOS resident commands such as COPY and DIP.

(MB-DOS Reference Guide, 1986, pp. 2.7 - 2.9,

1:

The use of function calls to change the interrupt vector table

providing ROM BIOS, IO.SYS and MS-DOS interrupt services is strongly

encouraged by Microsoft to prevent accidental or malicious corruption

of data structures within the operating system and the vector interrupt

table. It is also intended to allow backward compatibility for future

releases of the operating system that may include multitasking.

(MS-DOS Reference Guide, 1986, p. 6.3)

B. CHILD PROCESSES

The ability of the operating system to spawn a local process and

regain control after execution is an essential element of the

distributed processing network. MS-DOS Function Request 4BH is

utilized to load another program into memory and begin execution.

Frograms executed from the Command.Com command line prompt are executed

as child processes of the operating system in exactly the same way.

This funct-on provides for the execution of programs and for the remote

login capability required by the network. Several details of the

MS-DOS operating system capability were of interest in this thesis.

(MS-DOS Reference Guide, 1986, pp. 3.1 - 3.9)

1. Program Segment Prefix

When a child process is created, the MS-DOS operating system

finds the lowest available segment address to use as the start of

program memory for the spawned process, and builds a 256 byte control

block called the Program Segment Prefix (PSP) at offset zero within

that segment. The executable program immediately follows. While

Microsoft ooes not officially document the use of certain fields within

14

the PSP, sufficient information was collected from the MS-DOS Reference

Guide and other sources to manipulate the environment created for the

child process to accomplish the goals of the distributed processing

program.

a. Interrupts to be Restored on Program Termination

The interrupt vector table pointers for three essential

interrupts are placed in fields of the PSP of the spawned process prior

to execution. These are restored on program termination to insure that

the interrupt vector table is not corrupted should the child process

replace the vectors for its own use and then terminate abnormally.

These are: The Terminate Handler Address containing the address of the

operating system routine that accomplishes program termination; the

Control-C (also known as Control-Break) Address containing the address

of the operating system routine that handles operator induced program

termination; and the Fatal Error Handler Address used to process errors

tha: resu'lt in fatal program halts. (MS-DOS Reference Guide, 1986, pp.

b. The Environment Segment Address

The PSP contains a field that holds the segment address

of the system environment. This environment is a series of ASCII

strings that may be used by programs to determine permissible

operations or values. These strings take the form variable = value,

and are terminated in a zero (0) character. An example is the "PATH ="

environment variable used to set the search paths used by the command

processor Command.Com to locate an external command. The process'

current environment is made available by following this segment pointer

and searching the strings found at that address until a string with a

second terminating zero character is found. This facility is used by

the thesis program to locate a copy of the Command.Com on disk to run

batch programs (Edwards, 1987, pp. 286 - 288). Each child process

inherits a copy of the environment pointed to by the segment address of

its parent. This means that the child process may manipulate its own

environment without disturbing that of its parent. It also means that

the parent may manipulate its own environment prior to spawning a child

process in order to communicate with the child or to restrict certain

environmental parameters from the child, although this communications

means is not reversible. (MS-DOS Reference Guide, 1986, pp. 3.6 - 3.7)

c. File Handle Table

When the PSP is constructed, the operating system places

a copy of all open file handles in a data structure of the type

FILEHANDLE = ARRAY 1i..203 OF BYTE in the PSF (Greco, 1987, p. 25).

Each word in the table indexes another data structure internal to the

operating system that contains information needed to locate the file on

the disk system(s). This inheritance has the effect of passing all the

open files of the parent to the child. A file handle is a Unix style

16 bit word that is used to identify a file or a device known to the

operating system, and replaces the use of CF/M compatible File Control

Blocks for file references by the operating system (Simrin, 1988,

p. 204). File handles allow the use of pathnames to open or create a

file. Once opened, the file handle is returned to the calling program

as the reference to the file. The first five files are opened by the

16

operating system and have special meaning: (MS-DOS Reference Gu2de,

1986, p. 5.9)

TABLE 3-1

MS-DOS RESERVED FILE HANDLES

File
Handle Mnemonic Purpose Function

O- Stdln Standard Input Input can be redirected
1 StdOut Standard Output Output can be redirected
2 StdErr Standard Error Output cannot be redirected

3 StdAux COMi I/O cannot be redirected
4 StdPrn Printer I/O cannot be redirected

d. Redirection

Redirection refers to the ability of the input or output

character stream associated with one of the reserved files above to be

rerouted to or from a different file. An example of this function is

the use of redirection characters on the command line (K, >, >">, or),

when program oLutput is redirected to a file or pipe, as in the command

line entry: PROGRAM , FILE. Wher the operating system opens the

Standard Error Tile, it is directed to the same device as the Standard

Output file, the display console (logical device driver name CON), and

cannot be redirected on the command line as indicated in the table.

This limitation would prevent vital error information from being

redirected from the slave microcomputer display to the master

microcomputer display. (MS-DOS Reference Guide, 1986, p. 3.8)

While such redirection cannot be performed from the

prograiT command line, MS-DOS provides function calls that overcome this

limitation. These are MS-DOS function calls 45H, Duplicate a File

Handle (DUP, and 46H, Force a Duplicate of a Handle (FORCDUP). DUP

creates a new file handle that references the same file at the same

position as an existing file handle. It does so by referencing the

same internal data structure for the file in the operating system for

both files. FORCDUP takes as input two file handles, but forces the

first file handle to refer to a file referenced by a second handle.

The file referenced originally by the first handle is closed (Simrin,

1988, pp. 450 - 452). To accomplish redirection of the Standard Error

character stream and overcome the limitation of the operating system

cited in III.A.c above, the parent process may use the following

procedure (Greco, 1987, p. 26):

Open the file that Standard Error will be redirected to

for writing.

Save a pointer to Standard Error using DUP.

Force the Standard Error handle to point to the newly

opened file using FOMRCDUP. This closes Standard Error.

Close the handle created in (1) since it is no longer

needed.

The child program may now be spawned, and has no

knowledge of the redirection. Upon termination of the child, the

parent reverses the above process:

Force the Standard Error handle to point back to Standard

Error by using FORCDUP and the saved pointer.

This redirection method is used for both Standard Error

and Standard Output to interleave the two output streams into the same

file. A more direct method is to directly manipulate the file handles

in the File Handle Table of the Program Segment Prefix, however, this

18

violates the strictures mentioned in the beginning of this chapter and

could corrupt the data structures contained in the operating system if

improperly done. The use of documented function calls allows the

operating system to protect itself and to provide error handling.

C. PROGRAM TERMINATION

Upon termination of the spawned program, the operating system

accomplishes the following (MS-DOS Reference Guide, 1986, p. 4.241).

First, the three interrupt vectors described above are restored to the

interrupt vector table from values stored in the terminated process'

PSF. Next, control is given to the Terminate Handler address to return

control to the invoking process. Finally, all open files are closed.

Recall that the calling program retains a copy of all open files in its

own FSP. The effect of closing all the files of the child is to flush

file buffers held internal to the disk operating system and update the

disk directories (Defenbaugh, 1986, p. 22). The operating system then

terminates any redirection.

19

IV. THE PROGRAMMING LANGUAGE

Implementation of this thesis was originally attempted in a subset

of the Department of Defense programming language mandated for mission

critical computer resources, Ada. Ada was chosen to explore the

language in this environment and to apply the language features that

localize the major design decisions into individual program modules

(decomposition), promote information hiding through separate

compil'tion, and support data abstraction. Concurrency might have

allowed the separation of the communications and control requirements

into separate tasks, but was not supported in the subset. (MacLennan,

1987, pp. 261 - 263)

The subset of the Ada language chosen for this project was RR

Software Inc. JANUS/Ada. This subset of the approved language had

several limitations in addition to the lack of concurrent programming

(task) facilities, but was available and could be utilized on the same

microcomputer for program development and implementation. It had been

used successfully in a similar environment for local area networking

(Works, 1986), (Hartman and Yasinsac, 1986), and includes a very

capable assembler for constructing machine language packages. It

turned out that this particular implementation was unsuitable to the

proposed capabilities of the distributed processing network for the

reasons cited below.

2 0

A. JANJS/Ada

1. Memory Size Limitations of Compiled Code

The initial work for this thesis was to construct a command

line parser to recognize commands in MS-DOS syntax for execution on the

slave microcomputer. This was first implemented in assembly language

following the program of an established command intercept processor

(Mefford, 1986, pp. 313 - 334). This program successfully parsed the

elements of a command line and reported these components, thereby

demonstrating the potential to execute the command remotely. The code

files of table 4.1 resulted. Files ending in a "jrl" suffix are

compiler relocatable object files and files ending in a "com" suffix

are the linked result suitable for execution.

TABLE 4.1

ASSEMBLY LANGUAGE PARSER

Program Name Language File Size (bytes)

find com. jrl assembly 791
parsemai.jrl Ada package 148
parsemai.com compiled 4480

The parser was then recoded as an Ada package to obtain the

flexibility of the higher order language and to develop the assembly

language to Ada package interfaces. JANUS/Ada allows assembly language

procedures to call Ada procedures and functions, and to reference Ada

data structures. The implementation of the parser as an Ada package

allowed rapid modification to the parser to adjust the command syntax,

as well as for interface to the other Ada packages to be developed for

the system. When compiled, however, the following resulted:

21

TABLE 4.2

Ada LANGUAGE PARSER

Prooram Name Language File Size (bytes)

Int21.jrl assembly 948
cmdlyne.jrl Ada 13656
main.jrl Ada 505
main.com compiled 42423

The cost of coding in this implementation of JANUS/Ada is

evident above. The JANUS/Ada compiler emits about a tenfold increase

in code size to accomplish the same effort as the assembly language

version. The COM file is also much larger, due to the incorporation of

library routines from the Jlib86 support package to handle string

manipulation and other high level language constructs. With a code

size limitation of 64K bytes, results similar to the above would

rapidly exhaust the space available in the small memory model as

packages were added. This model is limited to 64 Kbytes of code and a

separate 64 Kbytes of data (JANUS/Ada Package User Manuals, 1983,

p. Z - 4), and is characteristic of COM files running under MS-DOS.

The options were either to code major portions of the thesis in

assembly language as had been done by Works, Hartman and Yasinsac,

linked together by Ada packages as a main program, or to find a way to

expand the code module. The latter was desirable due to the original

intent to utilize a hi-jher level language for the distributed

processing network. Before this could be pursued, however, a more

serious problem developed.

2. Failure of the Child Process Call

As described in Chapter III, MS-DOS commands or programs not

implemented internally by the operating system are called transient

commands, and must be run by loading the program into memory from disk

and executing it as a child process. As the next step in the above

implementation, a call was constructed in an assembly language package

body to the MS-DOS function 4BH, EXEC program (MS-DOS Reference Guide,

1986, pp. 4.237 - 4.239). This was done to overcome a limitation of

the JANUS/Ada supplied procedure, ProgCall. The supplied procedure

recognizes only program names without path specifications, and does not

allow for a command tail after the program name. The procedure also

terminates both the child process and its parent if the child process

terminates abnormally. This would not allow for a robust distributed

processing system, capable of recovering from a faulty child program

and continuing to operate in the network (JANUS/Ada Package User

Manuals, 196:, P. 15 - 3).

When this approach was implemented, however, all child

processes would execute normally when called from the MS-DOS function,

as expected. The system would lock up upon return of control to the

parent process, usually with a fatal error message such as INTERNAL

STACK OVERFLOW. This suggested that something was being corrupted in

the MS-DOS operating system upon termination of the child program.

An investigation of a disassembly listing of the compiled

program revealed that the JANUS/Ada runtime library was writing

initialization data into reserved areas in the Program Segment Prefix

of the parent program. These areas are undocumented by Microsoft in

its official literature, but have been identified by other authors.

Table 4.3 shows these locations: (Simrin, 1987, p. 211 - 212)

TABLE 4.3

JANUS/Ada INITIALIZATION AREAS

Location Contents

PSP:0016 PSP of parent process
PSP:O01C Standard Printer file handle (filehandle[4])
PSP:001E filehandle[6]
PSP:0020 filehandle[8]
PSP:0022 filehandle[lO]
PSP:0024 filehandle[12]
PSP:0026 filehandle[14]

Since the filehandles are indices to data structures internal

to the operating system holding information about specific open files,

the consequences of these actions are that the compiled program

unintentionally creates open filehandles after the Standard Printer

handle assigned by MS-DOS, or overwrite the filehandles for files

already opened by the parent program. Recall that MS-DOS opens the

first five handles, and the application program opens filehandles after

that up to the FILES = -number> set in the environment. When the

JANUS/Ada program overwrites these handles, the indices represented by

them now point to other potentially unrelated areas of the operating

system for files referenced by the file handles. These other areas may

then be corrupted when the operating system attempts to close the child

process' files using invalid file handles. These data structures are

common in the operating system to both parent and child. This may

explain why the JANUS/Ada built in file operations and functions would

no longer worK after a single assembly language call to operating

24

system function calls, as observed by Works (Works, 1986, p. 24).

Works wrote all file handling procedures for his program in assembly

language to overcome this fault. (Works, 1986, p. 33)

The effect of corrupted data areas in the operating system is

to compromise the internal state of MS-DOS when the child process

terminates.

3. Need for a Replacement Language

At this point, a decision was made to implement the thesis in

a language that would support child processes and provide a larger

memory model.

B. TURBO PASCAL

While performing the initial work for this thesis, Borland

Corporation Turbo Pascal version 3.0 was being examined for the

possible use of a construct similar to its operating system calls. The

language utilizes a very general procedure to call MS-DOS functions and

software interrupts with a data structure standing in for the contents

of the microprocessor registers discussed in Chapter I!. With such a

procedure constructed for the JANUS/Ada language as a supporting

package, the large number of assembly language procedures and functions

that Works, Hartman and Yasinsac required could be abstracted out to a

single general purpose procedure, tailored for each instance by the

register contents.

When the difficulty encountered with the failure of child processes

in JANUS/Ada, a rapid prototyping effort was used in Turbo Pascal to

check the author's understanding of the requirements for the EXEC call

5c

in another language to detect possible errors in implementation. The

EXEC function worked satisfactorily in Turbo Pascal, using either the

MS-DOS call construct or the compiler's built in procedure. Since the

Ada implementation appeared to be infeasible, the program was

implemented in Turbo Pascal. It turned out that version 4.0 of that

language has features that capture the essence of the original

programming objectives. Some particular features follow:

1. Information Hiding

Borland's Turbo Pascal version 4.0 implements the Unit as

originally developed for UCSD Pascal (Duntemann, 1987, p. 11). This

programming construct allows modular programming very similar to Ada,

however separate compilation cannot be achieved with just the module

interface declaration, as it can in Ada. Variables and procedures

implemented in the UNIT body are not visible by outside modules, as in

the Ada package.

2. Support for Child Processes

Turbo Pascal provides a robust implementation of the MS-DOS

Function 4BH, called EXEC. This is a high level procedure that takes

Pascal strings for the program path specification and the command tail

arguments as parameters. The procedure utilizes the Turbo Pascal

global variable DOSError to report operating system error messages for

program handling.

3. Data Abstraction

Turbo Pascal supports data abstraction in much the same way as

Ada, but does not implement a Private declaration.

26

4. Unit Initialization

The Turbo Pascal Unit provides an initialization section for

Units, which can be used to perform unit configuration and to save

state information prior to program execution. This is helpful for

saving interrupt vector table contents for restoration on program exit.

5. Unit Exit Procedures

Turbo Pascal provides an important feature by allowing the

programmer to declare an exit procedure that will be run upon program

termination. This procedure will execute for normal or abnormal

termination, and can be constructed to provide error handlers. The

primary use in this thesis was to insure that interrupt vectors were

properly restored on program termination.

6. Absolute Variables

TUrtu-o Pascal supports manipulation of hardware memory

locations by allowing the programmer to specify the actual location in

memory of a data structure. This is accomplished by the ABSOLUTE

reserved word in a VAR declaration, and was used to declare a pointer

to reference the video memory for windowing operations (Edwards, 1987,

p. 30:.

7. File Input and Output

Turbo Pascal provides the capability to read or write to

untyped files in addition to Wirth's Read and Write procedures. This

allowed the file transfer protocol to treat a file as a stream of

bytes.

"'-7

B. Port Read/Write

Turbo Pascal provides Port and Portw procedures to read or

write byte and word sized variables to the IBM PC ports. This

capability was used in the serial communications port module.

9. Interrupt Service Routines

The Turbo Pascal compiler has a special reserved word,

INTERRUPT, that allows the programmer to define procedures as interrupt

service routines. The compiler handles all register preservation and

stack operations across the call.

10. Exception Handling

Turbo Pascal does not implement the Ada exception handler,

however, the combination of the DOSError variable and the ability to

relax I/0, range and type checking within a local scope allows the

programmer to place the exception handling mechanism in the control

flow with standard structured programming techniques. An EXIT

procedure with a scope identifier would have been useful to escape a

procedure, however, the current approach enforces structured

programming.

11. High Level Software Interrupt Procedure

Turbc Pascal provides a predefined procedure, MSDOS, and a

data type, registers, that allows a simple and standardized interface

to the operating system software interrupt function calls. The

registers data type stanos in for the processor's built in regzsters

and allows the programmer to treat the MS-DOS functions in the same

manner as a procedure. No assembly language programming is involved.

28

12. ROM BIDS and Hardware Interrupt Procedure

The above procedure, MSDOS, is a special case of the general

Turbo Pascal procedure, Intr (Intr, regs), which allows access to any

hardware or software interrupt available on the IBM-PC compatible

microcomputer. No assembly language programming is involved.

13. Support for a Larger Memory Model

Turbo Pascal compiles programs into EXE files, and greatly

expands the potential size of a program. Each unit has an independent

code segment, with a maximum size of 64 Kbytes. A single data segment

and stack segment is allowed, each with their own 64 Kbyte limitation.

The remainder of memory, up to 640 Kbytes, is available on the heap.

The stack and heap size may be set by compiler directive to leave room

for spawned processes. (Duntemann, 192.7, p. 12)

C. IMPLEMENTATION

The distribUted processing program was implemented in Turbo Pascal

4.0. as described in the next chapter. This language provided support

4or all proposed capabilities while eliminating the requirement for

e tensive assembly language programring.

V. THE IMPLIEMENTATION

The distributed processing program in this thesis has its origins

in an existing terminal program supporting the Xmodem protocol

(Edwards, 1987, pp. 220 - 275). This "brassboard" program served as

the foundation for the addition of the command transfer functions that

were required by the proposed capabilities of the distributed

processing network, and was expanded to provide finer control over

multiple serial ports. In addition, command parser and local execution

modules were added for the Slave microcomputer to execute resident

programs. The operator interface and windowing environment was largely

retained intact, and is utilized for the man machine interface.

This approach allowed the referenced program to be modified in

discrete steps, an- provided a test environment to exercise each

portion o; the implementmtior listed below.

A. THE HARDWARE CONFIGURATION

Thie hardware used to implement the distributed processing network

consists of i9t' FC/AT compatible microcomputers. Each Slave

microcomputer is supplied with a hard disk drive of 10 megabytes or

greater capacity, 640 Kbytes of memory and one RS-23:2C port. The

Master microcomputer is configured identically, except it has an

additionai communications port.

The serial connection between computers are the RS-232C

communications ports operating at 9600 baud for IBM PC/AT compatible

70

machines and 4800 baud for IBM PC/AT compatibles. The microcomputers

at each end of a single link must be configured for the same speed.

The pin connection for the interconnecting cables is shown at Figure

6.1. For microcomputers with the nine pin AT style connector, a nine

pin to RS-232C 25 pin DB-25 cable is recommended, with a NULL modem in

between. Hardware handshaking is turned back in this configuration.

The program will operate satisfactorily through a modem if the baud

rate is lowered. (Flanders, 1989, p. 252)

FIGURE 5.1

SERIAL PORT CONNECTIONS

Computer 1 Computer 2
Pin Function Pin Pin Pin Function

Signal Ground 7 -------- 7 Signal Ground
Transmit Data Receive DataSReceive Data ---
Receive Data 3 < ---- Transmit Data
Request to Send 5 -, 5 Request to Send
Clear to Send 5 -5 - S Clear to Send
Carrier Detect S -, '- 8 Carrier Detect
Data Set Ready 6 -- , ,- 6 Data Set Ready
Data Terminal Ready 20 - - 20 Data Terminal Ready

B. SOFTWARE CONFIGURATION

1. The Operating System

The operating system is supplied with the microcomputers, and

is Microsoft MS-DOS, version 3.0 or higher.

2. The Distributed Processing Program

The distributed processing program was written to accommodate

the above operating system, and is used on both the Master and Slave

microcomputers.

...

3. ZCOPY File Transfer Program

A high speed, adaptive file transfer program is provided with

the distributed processing system software that allows file transfers

to be executed at the maximum speed permitted by the serial

communications link. The maximum speed is 115 Kbytes/second. The

program runs as a child process under the distributed processing

system, and includes independent error checking protocols. (Flanders,

1989, p. 282).

4. Software Maintenance

a. Configuration

Configuration is accomplished by a built in function in

the program, provided the program was initialized as a Master. This

normally suffices to set default configuration options, such as port

settings, for automatic loading when the program is run. The settings

are saved in a file. If the file is erased, the program initiates its

default settings and the operator can then recreate the file.

b. Software Modification

Software modification is accomplished through built

in editing, compilation, and run time environment supplied with Turbo

Pascal version 4.0. Build and make utilities are supplied with the

compiler to allow program modification and rebuild.

C. SYSTEM DESIGN

The problem of designing a distributed processing network was

decomposed into the following efforts:

i. The command parser for the remote (slave) microcomputer.

L3

2. The execution of child processes.

3. Redirection of child process output.

4. File and command transfer via Xmodem.

5. Serial communications.

6. The man machine interface.

1. The Comand Parser

The command parser decomposes an MS-DOS command directed to

the Slave microcomputer for execution into its component disk drive,

path, command or executable file name, and command arguments. The

latter is commonly called the command tail. Since compatibility with

the current MS-DOS command syntax was desired, these commands take the

form:

[drive:]E\][directory\]..[directory\) command [command tail]

Once parsed, the type of command is determined so that the Slave

computer can execute it properly. As an experiment, the Unix commands

CAT and LS are mapped irf their MS-DOS equivalents to demonstrate a

Slave with limited bilingual capabilities.

2. The Execution of Child Processes

Once the command is parsed, the parser must properly determine

if the command cited is a command normally executed internally by

MS-DOS, an executable COM or EXE file, or refers to a directory

operation. Internal MS-DOS commands implemented within the distributed

processing program are detected by pattern matching, the remainder are

identified by conducting an iterative search across the specified

directory (or the current directory if none is cited in the remote

command) for an executable file of the appropriate e>tension, utilizing

the Turbo Pascal built in functions Find-First and FindNext. If

found, the type of file is passed by the parser to the appropriate

execution routine. The executable files are those with COM, EXE or BAT

extensions. MS-DOS does not require the operator to enter the

extension, and will execute the first file encountered with the command

name and an executable extension in the following order: COM, EXE and

BAT. The parser copies this trait. Implementation of the different

command types is summarized below.

a. Internal Commands

Internal commands are those that are executed within the

MS-DOS command processor, and are available from the familiar A>

prompt. These include the directory manipulation commands ChDir, Copy,

Del, Dir, MkDir, Ren, RmDir and disk drive login; to which were added a

prompt command to obtain the current directory on the Slave

microcomputer for display at the remote, and Equip, which provides the

Slave configuration (disk drives, memory, etc) accessible to the ROM

BIOS interrupt $11 (MS-DOS Version 3.21 User's Guide). ChDir, MkDir,

and RmDir along with Prompt are provided within the distributed

processing program. Error messages are supplied from the MS-DOS

operating system, hence, they are identical to those encountered in

local operations. Rather than duplicate the capabilities of the MS-DOS

command processor for the remaining commands, MS-DOS is utilized to

assist in this effort. A secondary copy of the MS-DOS command

processor is located by inspecting the "COMSPEC=<path/name>" string

f-om the local environment area, and is spawned with the appropriate

command tail for the desired command. This allows the remote command

:4

to execute as if it were entered from the Slave microcomputer's

keyboard, and provides a familiar response. A utility program in the

public domain was utilized as a programming template to detect the

proper course of action before spawning a child process, depending on

the type of command received. (Mefford, 1988, pp. 321 - 336)

b. External (Executable) Commands

External commands are those that require the distributed

processing program to load, execute and collect output for display.

These are the familiar COM, EXE, and BAT files found in directory

listings. These commands are executed by calling the Turbo Pascal EXEC

procedure directly from the distributed processing program, with the

explicit path specification required by the procedure supplied by the

parser in its search for the executable file. The command tail is

provided from the parsing operation. Batch files are handled by

spawning a secondary copy of the command processor with the batch file

name as the command tail, as described for selected internal commands.

(Mefford, 198e, p. 27)

3. Redirection

Redirection control is contained in a separate module that

contains most of the Turbo Pascal EXEC calls. Prior to spawning an

executable file, a variable is checked to determine if the program

output is to be redirected to a file managed by the distributed

processing program. This file is used to send the program output back

to the Master microcomputer over the communications channel by the

Xmodem protocol after execution of the program cited in the remote

command. The variable is managed by the module initilization routines

- e

and is normally set for redirection, otherwise the program output would

appear on the Slave microcomputer screen. If redirection is desired,

the distributed processing program redirects its own output to the

redirection file, utilizing the MS-DOS Function Calls 45H (DUPlicate

handle) and 46H (FORCDUPlicate handle) as described in Chapter III.

Since the child process inherits all open files from the parent (in

this case the distributed processing program), it proceeds through the

execution oblivious to the redirected output. Error reports are also

available in the redirected output file, which overcomes a limitation

of redirection invoked from the command line with the <, >, X and

symbols. The appropriate files are then available to forward to the

Master microcomputer. (Greco, 1987. p. 25)

4. File and Command Transfer via Xmodem

Since the Xmodem protocol is utilized for both command and

data transfer, the highly modularized approach found in (Krantz, 1985,

pp. 66 - 89) is implemented to handle synchronization, packet transfer,

and file transfer under flow control in a hierarchical manner. The

modular approach does require a large number of variables that are

global in scope to the different building blocks, however, the

concentration of these variables and their associated function and

procedure implementations in a Turbo Pascal Unit as private variables

preserved information hiding. An additional file transfer program,

Zcopy, is available as an operator option on the Master display and

allows the use of an adaptive protocol that transfers files at the

maximum speed of the communications link, regardless of settings.

36

5. Serial Comunications

All communications between the Master and Slave microcomputers

are handled by the microcomputers standrd serial communications ports.

Communications is at 9600 baud for communications between IBM PC/AT

compatibles, and at 4800 for IBM PC compatibles. The interrupt service

routines handle receive character streams for hardware ports COMI and

COM2, and are adapted from source listings posted on the

info-pascal@vim.brl.mil network (Kimura, 1988) and (de Boer, 1988).

Receive characters are queued in a receive buffer for each port.

Transmit characters are sent under program control in a polling loop.

6. Man Machine Interface

The program uses the same operator interface for both the

Master and Slave configurations. Initialization is accomplished from a

configuration file in the local directory or from default constants if

the file is absent. When initialized, the program presents a terminal

screen for the primary port with communications inhibited. The

operator is then able to select options by special key combinations

(Alt-keys) to revise the configuration file, initialize communications

ports, enable and disable receive interrupts on a port basis, and

select the current port for use with file transfers and command

transfers to the connected slave. File, command transfers, and the

output of the remote Slave computer is available on a monitor window.

Status windows are shown for critical parameters.

The Slave microcomputer is operated in an infinite loop to

receive and process commands. Local operation may be restored (at the

37

cost of disabling server functions) by pressing a local key which

aborts the Slave program.

D. DESIGN CONSIDERATIONS

1. Assembly Language

Assembly language is used in only two locations in this

thesis, for the purposes of code optimization. The first is to move

data between the screen buffer and a storage location to open and close

windows on the screen as used in the windowing module. The second is

to enable and disable CPU interrupts for the interrupt service routines

contained in the dat? communications module. Both instances utilize

built in assembly language facilities of the compiler. The remainder

of the program is coded in the Turbo Pascal dialect.

2. ROM BIOS Software Interrupts

Calls are made to the ROM BIDS of the IBM PC compatible

computers to perform communications port speed initialization

(interrupt $14), and to obtain the machine disk drive, memory, and

communications port configuration for display ($11).

3. Memory Management

Memory management is handled by the Turbo Pascal compiler

in accordance with the $M compiler directive. This was adjusted from

that offered by the Turbo version 3.0 to version 4.0 conversion

utility, which allocated all memory to the distributed processing

program. By reducing the size of the heap, child processes and MS-DOS

shells can be run from the program as a p rent. The primary consumer

of heap memory is for dynamic allocation of memory to save screen

38

displays for windowing. Current program memory requirements are less

than 75 Kbytes, exclusive of the MS-DOS operating system and any

Terminate and Stay Resident programs run before the program. The use

of Terminate and Stay Resident programs is not recommended due to

unpredictable side effects.

4. Synchronization

Synchronization is normally maintained by starting the Slave

microcomputer in the command receive mode and then executing in an

endless loop. The Master computer operator must initialize the

communications ports (if required) and connect to the appropriate port

to access the desired Slave. Commands are normally passed to the Slave

and responses displayed on the Master, however, if the Master computer

:s redirected to another task while the Slave is processing the

request, the Slave will wait on the Master with its response. This is

a functionality oa the Xmodem protocol, which is receiver drivt=. A

resynchronization command is available to the Master operator to force

the Slave back into the command receive mode if required. The process

is currently manual, and depends on operator familiarity with the

likely Slave responses. Adequate, although not necessarily automated,

status responses are available to the Master operator to determine the

Slave state.

5. Modular Programming

The windowing support unit, the Xmodem file and command

transfer protocol, and the RS-232C serial communications port and

interrupt service routines are contained in separate units. In the

case of the Xmodem unit and the data communications unit, the original

-.9

terminal program interface is retained although the implementation is

considerably different. This was intentionally done to create the

potential to p-ovide a different transfer protocol or to use a

different network by redesigning the implementation section of the

unit, and to demonstrate information hiding. The windowing unit was

simply converted to a Turbo Pascal unit (Edwards, 1987, pp. 50 - 98),

along with a general support unit (Edwards, 1987, pp. 66 - 73).

6. Preservation of Interrupt Vectors on Program Termination

The manipulation of the vectors in the IBM-PC interrupt vector

table provides a powerful means to enhance the capabilities of the

machine, whether to incorporate new hardware or to adapt an existing

capability in software. The potential is equally high to lose control

of the system if the interrupt vectors are not restored when the

program ends. This must be handled for normal termination as well as

unplanned, or abnormal termination.

E. SYSTEM EXECUTION

1. Initialization

The program contains all functions for operation as either a

Master or Slave microcomputer on the distributed processing network.

The operating selection is made when the program is run, either by

Distrib Master

for operation as a master, or by

Distrib

or

Distrib Server

4C0

for operation as a Slave. The program than searches for its

configuration file and uses that to set the default communications port

settings, screen colors, etc. If not found, the program utilizes built

in defaults.

2. Slave Operation

Slave operation is automatic, with the program initializing

its communications port (default is normally COM1), and entering the

command processing mode in an infinite loop. This loop may be reset by

the remote Master if the Slave is expecting to return a sequence of

responses from a completed command, and the Master operator decides to

abandon the command after execution. In this case, the Slave is reset

over the communications port to the beginning of the command receive

loop to prepare for the next command. The program is aborted and

control is returned to the operating system if any key on the Slave

keyboard is depressed. No warning is sent to the Master, since the

Master may be communicating with another Slave and receive buffers are

purged to begin a new communications sequence as recommended in the

Xmcdem protocol. The Master operator can check for a "live" Slave by

watching for the received NAK characters, displayed each five seconds

over the receive channel, or enter receive mode to display a program

response from the Slave.

3. Master Operation

Master operations are menu driven. Upon initialization, the

Master displays a status bar showing the current communications port

selected at the bottom of the screen and queues the operator to depress

the HOME key for a list of commands available. The program otherwise

41

displays a blank terminal screen although the communications ports are

disabled for receive on startup. When the operator depresses the HOME

key, a window appears that offers the following command selections with

a menu bar that can be positioned to select the desired command. The

operator is also reminded that the listed commands may be selected from

the terminal screen by depressing the Alt - <key> combination. The

commands are:

Alt-A Change drive & path
Alt-B Send a Break signal
Alt-C Update Config File
Alt-D Dialing Directory
Alt-E Local echo toggle
Alt-F Change DC params
AIt-G Show disk directory
Alt-H Hang up phone
Alt-L DOS Shell
Alt-M Activate Master
Alt-P Port Operations
PgDr,
Alt- XMODEM Get a file
APt-S Activate Server
PgIp,
Alt-T XMODEM Put a file
Alt-X (ESC) Exit emulator

A more complete discussion of the different commands is found in

Appendi," A, the Operator's Manual. The following is a summary of

capabilities, as seen from the Master microcomputer.

a. Terminal Operations

The opening screen of the program is adequate to perform

teletype terminal communications over the currently selected

cCmmunications port, once properly initialized. The initialization

commands are found in the Activate master subscreens.

42

b. Port Initialization

The menu selections available allow the operator to

override the default communications ports settings and to select a

communications port for communications with the remote Slave. An ESC

key returns the operator to the terminal screen.

c. Remote Login to Slave

Most operations are accomplished at the Slave by using

the remote login function. The command is packetized at the Master and

sent to the Slave as a 128 byte Xmodem packet. Upon successful receipt

at the Slave (signalled by an ACK character received at the Master),

the Master then assumes the Xmodem receive function to await the

response from the Slave. The Slave then sends a packet back with a

prompt containing its current directory and drive. This prompt is

structured to look like the operating system prompt. Once received by

the M.stL, the Slave reverts to command receive mode to await the next

command. The Master displays a window to prompt the operator for the

ne t command to send to the Slave, or to quit the command mode. If a

command is sent, it is packetized and transmitted as before.

d. Remote Program Execution

Programs are run on the Slave microcomputer in response

to commands received from the Master. Once the command is parsed, the

program handles some commands internally and runs a program as a child

process to accomplish those commands it does not recognize internally.

Fot spawned programs, the program output is captured in a file and then

sent back to the Master. The Master waits for the response after

47

sending the command. Responses may be a series of strings or files,

and are displayed on the Master remote login window.

e. Flow Control

Flow control (selection of receiver and sender) is in

accordance with the Xmodem protocol, with one exception. An EOT (End

of Transmission character is specified in that protocol to signal a

complete transmission. In order to accomplish multiple string or file

transmission from the Slave to the Master to forward the output of a

spawned program, the Master interprets each received EOT character as

an end of transaction (string or file) as in the original protocol, but

does not end its receive operations until a CAN character is received

from the Slave to signal the end of the command and response sequence.

f. Remote Reset

Related to flow control is the ability for the Master

microcomputer to reset the flow direction if the Master and Slave

microcomputers lose .yn!hronization. This may happen between the

command transfer to the Slave and the response from that microcomputer,

and is usually exhibited by both microcomputers attempting to send or

receive at the same time. The Master operator may break the deadlock

by sending a series of CAN characters to the Slave to force it back

into the command mode.

g. File Transfer

To send a file, the operator selects the ZCOPY option to

the remote microcomputer and the system prompts for a filename. A

complete path may be specified. Once selected, the program invokes a

copy of the ZCOPY program at the Slave and places it in ZCOF'Y Server

44

mode. The Slave then waits for the handshaking protocol from the ZCOPY

program at the Master (also spawned), and establishes a link over the

serial port at the maximum reliable data rate. Once the transfer is

complete, both copies of ZCOPY terminate and control is restored to the

distributed processing program at the established data rates. The

Slave then reports the ZCOPY program output to the Master.

F. THE MODULES

The following program modules are contained in the distributed

processing program.

1. Distrib

Distrib is the main program for both the Master and Slave

computers.

2. DataCom

Unit DataCom provides all procedures and functions needed to

initialize the computer serial communications ports, enable and disable

rece2ve interrupts, provide buffered reception of characters, clear the

receive buffer(s), send or receive bytes through the ports, send a

BREAf:: signal over the RS-232 port, and nondestructively read the

receive buffer(s,. It supports Unit Xmodem and the terminal portion of

Distrib. The currently selected communications port is contained in

public variable CurrentCom.

3. Director

Unit Director is a set of functions and procedures that allow

the output MS DOS file directories to a windowed environment. Masking

45

options and a selector for normal or abbreviated (similar to the MS-DOS

/w switch) displays are allowed.

4. ErrorCod

ErrorCod is a array of string constants mapped by the DOS

Error Code, Error Class, Recommended Error Action and Error Locus

indices found in (Microsoft, 1986, pp. 3-1 - 3.11, 4.254 - 4.255). The

unit is used by the units Parser, Spawn and the program Distrib to

report errors. A procedure is also provided to retrieve extended error

code information available in MS-DOS versions 3.0 and above by DOS

function call 59H.

5. General

The General Unit is a collection of general purpose routines

that support the Wndow Unit and other modules. (Edwards, 1987, pp.

66 - 77)

6. MiscPack

Unit Miscpack is a collection of data types and utility

routines supporting these other units: Xmodm, Parser, Spawn, Redirect,

and the main program Distrib. The strong typing features of Turbo

Pascal require that instances of data types in different units that

must be equated be declared in one place to be compatible at compile

time. (Swan, 1986, pp. 14 - 23)

7. Parser

Unit Parser contains a central procedure, ParserMain, which

attempts to parse and execute an MS-DOS style command on the local

machine. The remaining procedures and functions support this function.

46

8. Redirect

Unit Redirect is a set of functions and procedures that allow

the output of programs spawned under the Slave computer's copy of the

main program Distrib to be redirected to files. Once the program ends,

the Slave computer can then forward the output normally displayed on

the screen to the Master computer for display.

9. Spawn

This Unit detects commands that should be processed internally

by the Distrib program, and executes commands internally or by spawning

a child process. Command output and error responses are returned to

the caller either as strings suitable for conversion to Xmodm packets,

or by reference to files containing the text. This unit also contains

the redirection switch as a public variable that dictates whether

program output will be redirected to a file or displayed locally on the

screen. This switch is normally set to redire:t to file.

10. Support

The Support Unit contains most of the constant declarations

for the program, along tith the initialization procedure some general

puIrpCse procedures as found in the original terminal program.

(Edwards, 1987, pp. 241 - 272)

11. Wndow

The Wndow Unit provides all window creation, memory

allocation, display, menu bar processing, closure and memory

deallocation functions for the program Distrib. The unit was changed

from an in:lude file to a unit, but not otherwise changed from that

47

originally developed by the author in (Edwards, 1987, pp. 50-98). The

purpose descriptions are from the author.

12. Xmodm

This Unit handles all requests for Xmodem protocol packet and

file transmission and reception.

48

VI. CONCLUSIONS

The program developed and implemented for this thesis successfully

demonstrated the capability for unmodified IBM PC/AT compatible

microcomputers to operate in a distributed processing network. A small

star network consisting of one master microcomputer and two slave

microcomputers was installed and operated in a laboratory environment.

The network displayed the capability of transferring program and

data files between the master microcomputer and either of the slave

microcomputers, and the capability of the master to command the

executio of MS-DOS commands and executable programs on the slaves.

The network further demonstrated that the output of the commands or

programs could be displayed on the master computer. A simple error

recovery methodology was also demonstrated.

Implementation of this program was not feasible in RR Software,

Inc. JANUS/Ada, due to unexpected problems in the implementation of

that subset of the Ada language and that compiler's design. This is

not a fault of the Ada programming language. These design deficiencies

in the JANUS/Ada were specific to the implementation in an MS-DOS or

CP/M environment; and caused fatal operating system faults when a child

process was executed from the command parser, as implemented in

JANUS/Ada. The amount of code emitted by the compiler also appeared to

be relatively large. It should be noted that the compiler available

for this thesis was relatively old, version 1.5.2, and as a subset of

49

the Ada language was not validated. It may be that the current,

validated version has corrected these deficiencies.

Borland Corporation. Turbo Pascal proved to be a viable programming

environment for this thesis, and provided many of the features desired

from the Ada programming language. These include information hiding

through modular program and the unit structure, data abstraction,

strong typing, and high level procedures for file input and output,

access to the microcomputer input/output ports, and a standardized

interface to the system software interrupts. Assembly language

programming was not required, and was used in two isolated locations to

implement replacement interrupt service routines and enhance block data

movement.

50C

APPENDIX A

OPERATOR'S MANUAL

A. STARTUP

The distributed processing program is designed to operate on an IBM
PC/AT compatible microcomputer such as the Zenith Z-248. Minimum
configuration is a 10 Mbyte or larger hard drive, 640 Kbytes of memory,
an EGA or VGA monitor, and at least one floppy for program loading.
The following files should be resident on the hard disk in the desired
directory: DISTRIB.EXE, DISTRIB.CFG, DISTRIB.PHN. A subdirectory
should exist off the root directory of the hard disk named SCRATCH for
the maintenance of redirected output files generated by the Slave
program. The file transfer program ZCOPY.COM should be available in

the DISTRIB.EXE directory.
The microcomputers must be connected by a null modem and

appropriate cables before the network will operate. Turn on the Slave
microcomputer(s) first.

B. Slave Operation

Slave operation is automatic. For convenience, if the

microcomputer is to be used largely as a Slave in the distributed
processing network, an AUTOEXEC.BAT file may be placed on the boot

drive root directory that specifies the complete drive and path
specification for the program, with the following program name:

Edrive][path]DISTRIB Server

On startup, the program will load, initialize and display a
status screen with a monitor window for remote commands and the Slave's
responses. Operation of the Slave may be monitored from the display

screen. The program is aborted and control is returned to the

operating system if any key on the Slave keyboard is depressed. No

warning is sent to the Master.

C. Master Operation

Master operations are menu driven. For convenience, if the

microcomputer is to be used largely as a Slave in the distributed
processing network, an AUTOEXEC.BAT file may be placed on the boot

drive root directory that specifies the complete drive and path

spec:fication for the program, with the following program name:

51

[drive][path]DISTRIB Master

On startup, the program will load, initialize and display a
status bar at the bottom. This bar shows the current communications
port selected at the bottom of the screen and queues the operator to
depress the HOME key for a list of commands available. The program
otherwise displays a blank terminal screen although the communications
ports are disabled for receive on startup. When the operator depresses
the HOME key, a window appears that offers the following command
selections with a menu bar that can be positioned to select the desired
command. The operator is also reminded that the listed commands may be
selected from the terminal screen by depressing the Alt - <key>
combination. The commands are:

Alt-A Change drive & path
Alt-B Send a Break signal
Alt-C Update Config File
Alt-D Dialing Directory
Alt-E Local echo toggle
Alt-F Change DC params
Alt-G Show disk directory
Alt-H Hang up phone
Alt-L DOS Shell
Alt-M Activate Master
Alt-P Port Operations
PgDn,
Alt-R XMODEM Get a file
Alt-S Activate Server
FgUp,
Alt-T XMODEM Put a file
Alt-X (ESC) Exit emulator

These commands are discussed individually in the following
sections. What follows is a general sequence of commands or selections
to accomplish processing on the Slave microcomputer.

1. Terminal Operations

The opening screen of the program is adequate to perform
teletype terminal communications over the currently selected
communications port, once properly initialized. The initialization
commands are found in the Activate Master s.Abscreens.

2. Remote Login

The Slave microcomputer ma" he operated as though the Master
operator is entering commands . :m its keyboard and observing the
res, ltS on its display. These functions are remoted to the Master
screen.

52

To log in to the Slave, select Activate Master from the main
menu and then select options from the secondary menu to establish the
correct baud rate, parity, for the port connected to the desired Slave
and to connect the port. The default settings are usually satisfactory
once the network is established. The Master cannot reset the Slave's
port parameters remotely. Once the port is connected, select Remote
Login from the Activate Master menu. After a moment for the exchange
of command and response, the Slave's local directory will be displayed.
From this point, any MS-DOS command or program entered at the Master
may be run on the Slave and the output will be displayed at the Master.

3. Initialize Port, Connect Port, Disconnect Port

These commands are used to set the communications port
settings, and to establish a link to the attached Slave microcomputer.
Both the Slave and Master microcomputers must be set up at the same
serial port parameters to communicate. To change to a different Slave
(port), either first disconnect the current port and connect the
desired port, or simply connect the new port.

4. Equipment Status

This command will return the Slave configuration on the Master
screen. The number of disk drives, communications ports, and available
memory is displayed.

5. ZCOPY

These commands allow file transfers from or to the conn2cted
Slave. Upon activation, the program will prompt for the file name to
be sent or received. If the copy will result in another file of the
same name being overwritten, confirmation will be asked. The Master
will display the Slave's ZCOPY program output after the transfer is
complete. This is useful if an error occurs.

6. Reset Remote

This command is useful if the Slave was operating
satisfactorily and now appears unresponsive. It aborts any protocol
transfer in progress and restores flow control the command receive
mode.

7. Exit (ESC)

This exits the Activate Master environment. All
communications port selections remain intact.

537

D. OMMAND SUMMARY

The remaining commands accessed from the main screen are:

1. Alt-A Change drive & path

This command changes the current disk drive and path for file
transfers or directory operations. It also determines the starting
directory for a DOS shell.

2. Alt-B Send a Break signal

This command sends an RS-232C break signal over the currently
selected communications port.

3. Alt-C Update Config File

This command allows the operator to display the current
program configuration parameters as found in the file DISTRIB.CFG, in
the current directory. An error indication is given if the file is not
found. The operator can select any of the displayed parameters to
change, and a range of options is displayed. Default settings for the
communications ports, the modem dialing prefix, and screen color
settings are provided.

4. Alt-D Dialing Directory

This command allows the operator to dial a telephone number
from a list of stored numbers, or a number entered manually from the
keyboard. This command assumes a Hayes compatible modem.

5. Alt-E Local echo toggle

Intended for terminal operations, this command sets a half
duple. toggle to display transmitted as well as received commands if
the remote terminal does not echo received characters.

6. Alt-F Change DC params

This command allows the operator to set the baud rate, word
length, parity and stop bits for the currently selected communications
port, to override the configuration settings.

7. Alt-6 Show disk directory

This command displays the local disk directory, in MS-DOS
standard or /w formats.

8. Alt-H Hang up phone

This command tells the modem to disconnect the telephone line.

54

9. Alt-L DOS Shell

This command executes a secondary copy of the MS-DOS command
processor to allow the operator to utilize the operating system without
terminating the distributing processing program.

10. Alt-M Activate Master

This command opens a second set of commands to command the
Slave processor. These include:

Initialize port
Connect to current port
Disconnect current port
ZCOPY file to remote
ZCOPY file from remote
Get machine status
Login to remote machine
Reset remote server

a. Initialize Port

This command allows the operator to select the current
port parameters from a menu of options, ranging from 110 baud to 38,4CC
baud.

b. Connect to Current Port

This command allows the operator to assign a port
(currently COMI1 or COM2) as the port for current operations.

c. Disconnect Current Port

This command disables the receive interrupts for the

currently selected port.

d. ZCOPY file to remote

This command requests the name of the file to be sent to

the Slave, and then invokes a program called ZCOPY to send the file at
the maximum data rate supported by the communications port.
Precautions must be taken if a modem is used, since the modem will
dictate the maximum data rate.

e. ZCOPY file from remote

This command requests the name of the file to be received
from the Slave, and then invokes a program called ZCOPY to receive the
file at the maximum data rate supported by the communications port.
Precautions must be taken if a modem is used, since the modem will
dictate the ma':imum data rate.

5 5

f. 6et machine status

This command allows the Master operator to query the
configuration of the connected Slave microcomputer, and displays the
number of floppy disk drives, communications ports, and available
memory.

g. Login to remote machine

This command returns a prompt from the remote machine on
a full screen window at the Master. The operator is then able to send
commands to the Slave in much the same manner as from the local
operating system prompt. Responses are displayed on the Master screen.

h. Reset remote server

This command is used to resynchronize the Master and
Slave computers. It does so by sending a series of CAN characters down
the serial communications link to abort any operations in progress and
return the Slave to the command mode.

11. PgDn, Alt-R XMODEM Get a file

This command allows the Master to perform a file transfer from
an Xmodem compatible remote system. The filename is requested from the
operator to assign to the received file.

12. Alt-S Activate Server

This con-mand allows the operator to invoke Slave operations on
the local microcomputer, and is useful for systems initialization and
setup. Depressirg a key while in this mode aborts the Slave operation,
but returns the program to the terminal mode.

13. PgUp, Alt-T XMODEM Put a file

This command allows the operator to perform a file transfer to

an Xmodem compatible remote system. The filename of the file to be
sent is requested from the operator.

14. Alt-X (ESC) Exit emulator

This command halts the program, restores all communications

port interrupt vectors, and returns control to the operating system.

E. TERMINATION

1. Slave

Slave operation is terminated by depressing a key. Control
-eturns to the operating system.

56

2. Master

The Master is terminated by returning to the main menu
(terminal screen) and depressing Alt-X. Control returns to the
operating system.

5 7

APPENDIX B

INSTALLATION/PROGRAPMIN6 AIDS

This appendix provides information on the construction of null
modem cables for use between the Master and Slave microcomputers, and
provides a listing of all procedures and functions found in the
distributed processing program. These procedures and functions are
sorted alphanumerically within by program or unit.

A. SERIAL PORT CONNECTIONS

The serial connection between computers are the RS-232C
communications ports operating at 9600 baud for IBM PC/AT compatible
machines and 4800 baud for IBM PC/AT compatibles. The difference is
due to some spurious characters noted on the slower machine's display
during data transfers. The microcomputers at each end of a single link
must be configured for the same speed. The pin connection for the
interconnecting cables is shown at Figure B.1. For microcomputers with
the nine pin AT style connector, a nine pin to RS-232C 25 pin D5-25
cable is recommended, with a NULL modem in between. Hardware
handshaking is turned back in this configuration. The program will

ope-ate satisfactorily through a modem if the baud rate is lowered.
(Flanders, 1929, p. 252)

FIGURE B.1

SERIAL PORT CONNECTIONS
CompLter I Computer 42
Pin Function Pin Pin Pin Function

Sianal Ground 7 -------- 7 Signal Ground
Transmit Data2- -- > Receive Data
Receive Data 3 < 2 Transmit Data
Request to Send 5 -, , 5 Request to Send
Clear to Send 5 5 Clear to Send
Carrier Detect 8 -" ' 8 Carrier Detect
Data Set Ready 6 -- , , 6 Data Set Ready
Data Terminal Ready 20 -" - 20 Data Terminal Ready

B. INSTALLATION

Installation may be rapidly accomplished by connecting a null modem
cable to COMI for both the Master and Slave microcomputers. Install a
copy o+ Zcopy.com in the same directory as the Distrib.e:e program.
The file [istrib.cfg and Distrib.phn should not be resident in this

56

directory, or the program may initialize the COMI ports to incompatible
settings. Execute the command "Distrib Master" at the MS-DOS prompt of
both machines. This should bring both programs up in the terminal
mode. Depress the Alt-M (Activate Master) key combination to access
the communications port settings and initialize COM1 for 9600 baud, 8
data bits, I stop bit and no parity (4800 baud for non - AT IBM PC
compatibles). Connect to the COMI port and press ESC to exit the
secondary menu. The Master and Slave should be able to communicate as
glass teletypes to each other. If desired, change the default settings
for both microcomputers to the desired port parameters by selecting
Alt-C (Update Config File). This, when saved, will generate the
configuration file for the microcomputer. A similar procedure with
Alt-D will allow the creation of the telephone number file if desired.
Create an AUTOEXEC.BAT file for the microcomputer(s) designated as
Slave and include the command "Distrib Server" to enter the Slave
program on power up. A similar file with "Distrib Master" will allow
the Master microcomputer to assume that role on power up.

C. UNIT DEPENDENCIES

The following chart (Table B.1) illustrates the the dependencies of
the various units in the program, as a guide to the visibility of the
data structures, procedures and functions in the interface section of
each program module. CRT and DOS are units supplied with the compiler.
All programs and units depend on the System unit.

55

TABLE B.1

UNIT DEPENDENCIES

D E M R
D D I R G I E S
I A R R E S P D U X

UNIT/PROGRAM> S T E O N C A I S P W M
T A C R E P R R P' P 1N 0
R C T C R 1A 1S 1E 1A 0 1D D

DEPENDS ON 1 0 0 0 A C E C W R 0 E
V B M R D L K R T N T W M:

,__ .___-_--- -- --- ----__ ---- ---- --..+_ _ __ __

CRT ; X 1 X ; X : X ; 1 X x : X ' X : X ;
------.-----------.---------------------- . .-- ..- --------

DATACOM1" : X i ', :, x, : ', ! X x :,

---- ------- _---------------------

DIRECTOR I I I I I i
___.-- --- --__--- --- --- --- --- --- --- --- --- ---

DOS ', : , : X , X ! X , , ; , ; X x
------------------------------ +----------+---------------------

---------------.------.------.------.------.------.------.------.------.---- --------

---------.-----.------.------ ,------.------.------.------.------.------.------------

MIC. PROEDEFUCT 'IO LIST :x

---------- ... __--_-- -- n_--d------ e---- - r--- od------ ------- - -- -
P .E .A R S E, 'r, ', ','X, ' , . '
---------- --.-..... t__ .----- __----- ---------- ----- ----- ----- ----- ---- ----

........... .. ---.---------__--.------- .----- ------.------.------------

-------------_-,-_,---- ------ ,------,------,------,------,------,--------- ---------

...........- __-_--------____----.------.------,------,------,------ ------.------.------.------

... __ .__ ,-- _,_ _,_ --------.------,------,------ .------ ,------ .------ .------

--- ------ -- -- ___.__ - --.- _ _ _ _-.---.-------.---.---.---.---.----

C. PROCEDUREIFUNCT ION LIST

TC- f -'l Aovin r_, funi,-cL'4 tio s and proceduires are found wi I1-11, the Distri b

program:

1. Program Distrib

El. Chanoe Dr FParameters

6C

b. Comms-function
C. DialingDirectory
d. Dial-Phone
e. Dirs
f. Dos-Shell
g. Get..Dial
h. Get..Equip
i. HandleAltKey
j. Hangup
k. Operator~input
1. Operatormessage
M. Process-command
n. Reset-remote
o. Remote-Command
p. Riogin
q. RxFile
r. Tx-File
S. SaveFile
t. TTY

2. UNIT Dataco.
a. Connected
b. DataComm-Error
C. Disable
d. DisableInterrupts
e. Enable
f. EnableInterrupts
g. Establish
h. He>:Byte
i. Hex Word
j. FurgeLine
4.. ResetChip
1. P8232-Avail
M. RS2:.2-Pee.
n. P8232,In
o. RS232,Iit
p. RS232ISRl
Q. RS232,1R2
r. RS232,Out
S. RS~EaO
t. PSCl eanup
U. PSEight EBits
V. RS-Initialize
W. PS-Restore
X. SelectBitRate
y. SelectFraming

Z. SelectParity
a6. SelectWor-dLength
Ab. Send-EQI
8C. SendStri ng

61

3. UNIT Director
a. GetAttribut
b. ShowDir
c. StandBy
d. ViewDir
e. WriteEntry

4. UNIT ErrorCod
a. ExtendedErrorCode

5. UNIT General
a. Beep
b. Cursor Size
c. Exchange
d. FillWord
e. Get Time
f. Max
g. Min

6. UNIT Miscpack
a. BumpStrUp

7. UNIT Parser
a. argc
b. argv
C. Initparse
d. Parse
e. Pa-seName
f. Parser main
g. Resolve-command

B. UNIT Redirect
a. CloseFile Handle

b. DuplicateHandle
C. Init Redirect _Unit
d. RedirectAllOutput
e. Redirect Handle
f. Redirect Std Input
g. RedirectStd Error
h. RedirectStdOutput
i. RestoreStdError
j. Restore Std Input
K. Restore Std Output
1. Restore All Output
m. RestoreCRT_Assignments

9. UNIT Spawn
a. Match Command
b. Process intrinsic-command
c. Run-Local

62

10. UNIT Support
a. Build-Status Line
b. Check._:Aux port
C. CheckKeyboard
d. Find Environment
e. GetEquip
f. Initialize
go ModifyEntry
h. NoFile
i. OK
j. Save-File
k.. Yes

11. UNIT Wndow
a. BuildBorders
b. Close Window
C. Get-DummyScreen
do GetReal _Screen
e. Get-Window
f. Init Window Info
go MoveWindow
h. WriteStatus
1. OpenWindow
j. Process Wi ndow Menu
1. Restore-Window
1. Save-Window
M. SetBack ground
n. SetColor
o. SpecialProcessing

12. UNIT Xmodm
a. buf -to-string
b. CommandXfer
C. Get Buffer
d. Get response
e. Read~ux
f. Receive-Record
g. Respondby.fi le
h. SendCAN;
1. Send EOT
j. SendString
k. stringto~buV
1. Sync _Receive
M. Send-Record
r. SyncSend
o. Transfer-File
p. Update_Status
q. WriteAux
r. Xmodem-Xfer

63

APPENDIX C

XMODEM PROTOCOL

The following is an overview of the Xmodem protocol, as described

by the author. (Trimble, 1989).

A. MODEM PROTOCOL OVERVIEW 178 lines, 7.5K

1/1/82 by Ward Christensen. I will maintain a master copy of this.
Please pass on changes or suggestions via CBBS/Chicago at (312)
545-8086, or by voice at (312) 849-6279.

NOTE: this does not include things which I am not familiar with,
such as the CRC option implemented by John Mahr.

Last Rev: (none)

At the request of Rick Mallinak on behalf of the guys at Standard
Oil with IBM P.C.s, as well as several previous requests, I finally
decided to put my modem protocol into writing. It had been previously
formally published only in the AMRAD newsletter.

Table of Contents
1. DEFINITIONS
2. TRANSMISSION MEDIUM LEVEL PROTOCOL

MESSAGE BLOCK LEVEL PROTOCOL
4. FILE LEVEL PROTOCOL
5. DATA FLOW EXAMPLE INCLUDING ERROR RECOVERY
6. PROGRAMMING TIPS.

1. Definitions

<soh:- 01H
eot> 04H

<aJ> 05H
*nak[15H
<can. 18H

2. Transmission Medium Level Protocol

Asynchronous, 8 data bits, no parity, one stop bit.

The protocol imposes no restrictions on the contents of the
dita ly transmitted. No control characters are looked for in the
128-byte data messages. Absolutely any kind of data may be sent -
binary, ASCII, etc. The protocol has not formally been adopted to a

64

7-bit environment for the transmission of ASCII-only (or unpacked-hex)
data , although it could be simply by having both ends agree to AND the
protocol-dependent data with 7F hex before validating it. I
specifically am referring to the checksum, and the block numbers and
their ones-complement.

Those wishing to maintain compatibility of the CP/M file
structure, i.e. to allow modemming ASCII files to or from CP/M systems
should follow this data format:

ASCII tabs used (09H); tabs set every 8.
Lines terminated by CR/LF (ODH OAH)
End-of-file indicated by AZ, 1AH. (one or more)
Data is variable length, i.e. should be considered a

continuous stream of data bytes, broken into 128-byte chunks purely
for the purpose of transmission.

A CP!M "peculiarity": If the data ends exactly on a
128-byte boundary, i.e. CR in 127, and LF in 128, a subsequent sector
containing the 'Z EOF character(s) is optional, but is preferred. Some
utilities or programs still do not handle EOF without ^Zs.

The last block sent is no different from others, i.e.
there is no "short block".

3. Message Block Level Protocol

Each block of the transfer looks like:

SDH 'blk *.><255-blk *><--128 data bytes-->Kcksum>

in which:
'SOH' = 01 hex
<blk #> = binary number, starts at 01 increments by

1, and wraps OFFH to OOH (not to 01)
<255-blk #> = blk # after going thru 8080 "CMA" instr,

i.e. each bit complemented in the 8-bit block number.
Formally, this is the "ones complement".
..cksum- = the sum of the data bytes only. Toss any

carry.

4. File Level Protocol

a. Common to Both Sender and Receiver

All errors are retried 10 times. For versions running
with an operator (i.e. NOT with XMODEM), a message is typed after 10
errors asking the operator whether to "retry or quit". Some versions
o4 the protocol use ;"can':, ASCII -^X, to cancel transmission. This was
never adopted as a standard, as having a single "abort" character makes
the transmission susceptible to false termination due to an <ack> <na>
or <soW: being corrupted into a .:can> and canceling transmission.

65

The protocol may be considered "receiver driven", that
is, the sender need not automatically re-transmit, although it does in
the current implementations.

b. Receive Program Considerations

The receiver has a 10-second timeout. It sends a <nak>
every time it times out. The receiver's first timeout, which sends a
<nak>', signals the transmitter to start. Optionally, the receiver
could send a <nak> immediately, in case the sender was ready. This
would save the initial 10 second timeout. However, the receiver MUST
continue to timeout every 10 seconds in case the sender wasn't ready.

Once into a receiving a block, the receiver goes into a
one-second timeout for each character and the checksum. If the
receiver wishes to <nak> a block for any reason (invalid header,
timeout receiving data), it must wait for the line to clear. See
"programming tips" for ideas Synchronizing: If a valid block
number is received, it will be:

(1) The expected one, in which case everything is
fine; or

(2) a repeat of the previously received block. This
should be considered OK, and only indicates that the receivers <ack'
got glitched, and the sender re-transmitted;

(3) any other block number indicates a fatal loss of
synchronization, such as the rare case of the sender getting a
line-glitch that looked like an <ack>. Abort the transmission, sending

c. Sending Program Considerations

While waiting for transmission to begin, the sender has
only a single very long timeout, say one minute. In the current
protocol, the sender has a 10 second timeout before retrying. I
suggest NOT doing this, and letting the protocol be completely
receiver-driven. This will be compatible with existing programs.

When the sender has no more data, it sends an *eot>, and
awaits an .ack , resending the <eot> if it doesn't get one. Again, the
protocol could be receiver-driven, with the sender only having the
high-level 1-minute timeout to abort.

5. Data Flow Example Including Error Recovery

Here is a sample of the data flow, sending a 3-block message,
which handles the two most common line hits - a garbaged block, and an
<ac> reply getting garbaged. <xx> represents the checksum byte.

66

FIGURE C.1

DATA FLOW EXAMPLE

SENDER RECEIVER

times out after 10 seconds,
< --- <nak>

<soh> 01 FE -data- <xx>
<---_ <ack>

<soh> 02 FD -data- xx > (data gets line hit)
<--- <nak>

<soh>' 02 FD -data- xx --->
<ack>

<soh> 03 FC -data- xx
(ack gets garbaged) <--- <ack>

<soh> 03 FC -data- xx --- > <ack>

ect,
< ack::>

6. Programming Tips

The character-receive subroutine should be called with a
parameter specifying the number of seconds to wait. The
receiver should first call it with a time of 10, then <nak'> and
try again, 10 times.

After receiving the < soh', the receiver should call the
character receive subroutine with a 1-second timeout, for the
remainder of the message and the <cksum:. Since they are sent
as a continuous stream, timing out of this implies a serious
lite glitch that caused, say, 127 characters to be seen instead
of 128.

When the receiver wishes to naL', it should call a "PURGE"
subroutine, to wait for the line to clear. Recall the sender
tosses any characters in its UART buffer immediately upon
completing sending a block, to ensure no glitches were mis-
interpreted.

The most common technique is for "PURGE" to call the
character receive subroutine, specifying a 1-second timeout,
and looping back to PURGE until a timeout occurs. The <nak.: is
then sent, ensuring the other end will see it.

You may wish to add code recommended by Jonh Mahr to your
character receive routine - to set an error flag if the UART
shows framing error, or overrLun. This will help catch a few
more glitches - the most common o; which is a hit in the high
bits of the byte in two consecutive bytes. The <cksum> comes

67

out OK since counting in 1-byte produces the same result of
adding BOH + SOH as with adding OOH + OOH.

68

APPENDIX D

MAINTENANCE MANUAL FOR DISTRIB PROGRAM

A. PROGRAM DISTRIB

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description

Distrib is the main program for both the Master and
Slave computers operating in the distributed processing network. The
main program loop initializes the window unit, saves the current

directory and the current screen image for restoration on program

termination, and then calls Initialize in the Support Unit to establish
the communications port parameters, screen colors, dialing directory,
and other default parameters. The program then examines the command

tail following the program name when it was called from the operation
system and takes one of the following actions:

(1) Command tail is NIL or "Server". If nothing is

specified after the program name, or the word "Server" is found as the
first command line parameter, the program assumes it is to operate as a
remote Slave or Server and enters a processing loop to wait for a
command packet from its communications port. A local screen display is
available showing a program version banner and a monitor window showing
commands received and responses generated. Local keyboard input after
this point will abort the program, reverting the computer to local use.

(2 Command tail is "Master". If the word "Master" is
found as the 4irst command line parameter, the program enters the
terminal mode through the default communications port and awaits
operator action at the local keyboard. If a remote Slave computer is
connected, NAK symbols will be displayed periodically as the remote
computer awaits a command. A status line is displayed across the 25
line of the screen and HELP is offered to the local operator if the
HOME key Is depressed. HELP displays a list of available commands to
initiate file transfers or run remote programs.

2. Subroutines Contained

a. Dial Phone
() Type: Procedure

69

(2) Purpose: To dial a selected telephone number on a
Hayes compatible modem connected to the modem port.

(3) Description of Parameters: I is the entry number
to be dialed that was selected by the user from the DialingDirectory
procedure that follows. DemonDial, if TRUE, repeat dials the entry
until the modem reports a connection. This procedure changes the COMM
port selection stored in the DataCom Unit variable CurrentCom to the
modem port, and leaves it there.

(4) Subroutines Called:
Flush-Buffer (dumps the receive buffer)
DataCom. Connected
DataCom.RSInitialize
DataCom.RSCleanup
DataCom.RS232_In
DataCom. RS232_Avail
DataCom. SendString
CRT.CIrEOL
CRT.ClrScr
CRT.Delay
CRT.GoToXY
Wndow. Beep
Wndow.GetWindow
Wndow.OpenWindow
Wndow. CloseWindow

(5) Process Description
Given the dialing directory entry to dial, the

procedure initializes the modem port according to information stored in
the dialing entry data structure Support.PhoneStuff; and sends a
string to the modem to dial the number. If repeat dialing is selected,
a window is displayed showing the progress of the call.

b. Set Dial
(1) Type: Procedure
(2) Purpose: This procedure allows the operator to

select a telephone number to be dialed.
(3) Description of Parameters:

Input: Support.PhoneMenu (the list of available
numbers)

Output: The function returns the order of the
n'th phone list entry

(4) Subroutines Called:
Wndow.OpenWindow
Wndow. ProcessWindow

f5) Process Description
The procedure calls OpenWindow with parameter

Phone Menu from the Support Unit to display a menu of telephone numbers
ccrtainec in the file DISTRIB.PHN, and allows the operator to select
one with a menu bar.

c. DialingDirectory
'1) Type: Procedure

70

(2) Purpose: To allow the user to dial, modify, add
or delete any telephone number entry in the data structure
Support.PhoneStuff.

(3) Description of Parameters: none.
(4) Subroutines Called:

Get-Dial (displays the list of telephone numbers
that are available)

CRT.GoToXY
CRT.CIrEOL
CRT.ClrScr
Support. ModifyEntry
Support. OK
System. FreeMem
System. GetMem
System. Move
System. SizeOf
Wndow.GetWindow
Wndow. OpenWindow
Wndow. CloseWindow

(5, Process Description
This procedure first displays a window allowing

the operator to dial, modify, add or delete any number in the data
structure Support.PhoneStuff. If dial is selected, the number is
dialed and the program returns to terminal mode. If modify or delete
is selected, a list of available names attached to known telephone
rn.mters is displayed fcr selection. If a number is to be added, a
bla-4 pE-rameter table is displayed for data entry. On completion, the
cperet:- is *4;ered the opportunity to save the added number to the
file D:STFI5.P'Hf, t~rough a call to ModifyEntry. ESC returns to the

d. Dirs
Tyipe: Procedure

(2) Furpose: To allow the user to display the local
disv dire,-tor,.

C' Description of Parameters: none.
C4, Subroutine- Called:

CT. GoToYv
CRT. l rEOi.
CT. C rScr
DCn.Find First
POS.Find Ne'-t
System. ChDir
S,'stem. GetDir
System. Read ey
Wrdow. Open Window
Wndow. Close Window

(5 FTro ess Description
Thic procedure prompts the user for a path

spe:ic~~to, ard dire:to-v masi simaiar to that Lsed by the ME-DOS DIR

command and then displays the directory for that specification a screen
at a time. Capabilities similar to DIR *.* and DIR *.*/w are provided.

e. ChangeDCParameters
(1) Type: Procedure
(2) Purpose: To allow the user to select speed,

parity, word length and stop bit parameters for the COM port specified
by DataCom.Current_Com.

(3) Description of Parameters: DataCom.CurrentCom
(4) Subroutines Called:

CRT. CIrScr
DataCom.RS Initialize
DataCom. RSCleanup
Wndow.OpenWindow
Wndow. Close Window
Wndow. Process Window

(5) Process Description
This procedure offers a selection of parameter

combinations for the currently selected COM port and allows the port to
be configured accordingly. A menu bar selection is used.

f. Hangup
(i) Type: Procedure
(2) Purpose: To hang up the modem.
(3) Description of Parameters: DataCom.Current Com
(4) Subroutines Called:

CRT.Delay
DataCom.RS232 In
DataCom. RS232 Avail
DataCom.RSInitialize
DataCom. RSCleanup
DataCom. Send String

(54 Process Description
This procedure places the modem in command mode

and sends a disconnect command string to the Hayes compatible modem
connected to the current communications port.

g. Operator_Input
(1) Type: Function
(2) Purpose: To obtain a string input from the

operator.
(3) Description of Parameters: Title is a string

typed in the Wndow Unit that is to be displayed on the window; Prompt
is a string written in the window area specifying what the operator is

to enter.
(4) Subroutines Called:

CRT.ClrScr
Wndow. Open_Window

Wndow. Close Window

72

(5) Process Description
This function opens a titled window and waits for

the operator to type a string. The string is returned as the function
result.

h. Operatar_essage
(1) Type: Function
(2) Purpose: To inform the operator with a string

message, usually of some error condition that is to be temporarily
displayed.

(3) Description of Parameters: Title is a string
typed in the Wndow Unit that is to be displayed on the window; Message
is the string message to be provided to the operator. Note that this
function depends on the calling program to close the window.

(4) Subroutines Called:
CRT.ClrScr
Wndow. Open_Window

(5) Process Description
This function opens a titled window and places the

message string in the window.

i. ProcessCommand
(1) Type: Function
(2) Purpose: To operate the computer as a Slave,

process all requests to initialize COM ports, transfer files between
Master and Slave computers, remotely operate a Slave computer, or reset
the connection between computers.

(7) Description o4 Parameters: The function returns
to the call:ng program an enumerated state variable defined in the Unit
Xmoda depending on the successful dispatch of a command to a Slave
computer and the receipt of the response, or an indication that the
local operator has aborted the operation by pressing a key. The
keypressed indication is typically all that is of interest, since the
fvnction ormaily called repeatedly.

(4) Subroutines Called:
C-T. :IrScr
CFT .GoToXv

System. Readi:ey
Wndow. OpenWindow
Wndow. Close Window
Wndow.Get Window
Wndow. ProcessWindow
Xmodm. Buf to String

Xsoidm. CommandXfer
Xmodm. SendCAN
Xmodm. Stringto-buf
Xmodm.Respond_by_file

5 Procrss Description

The initial state of the communications lin is
'rom Master to Slave (this process). This function opens a small
statUS window indiceting whether it is awaiting a remote commanc,

-7-

parsing a received command for local execution, or completing the
command execution. It does so in this sequence: First, a loop is
entered that repeatedly calls the function Xmodm.Command Xfer. On
successful receipt (status = Rx done), the command is converted from an
Xmodem packet into a string and passed to Parser.Parser main for
execution. The communications link also switches direction, with the
Master expected the Slave to initiate Xmodem packet transmissions.
This procedure returns any error indication from the locally executed
procedure or spawned program as a string in the variable ErrorMsg,
along with a typed variable Errtype indicating whether the response is
a file (for program results or output) or a simple string variable or
nothing at all (NULL string). Errtype is used in a following CASE
construct to send the file specified by a complete drive and path
specification in ErrorMsg back to the Master computer, or to forward
Error Msg as a packetized string utilizing the Transmit option of
Xmodm.CommandXfer. Similarly, this procedure returns any output from
the locally executed procedure or spawned program as a string in the
variable Response, along with a typed variable Restype indicating
whether the response is a file (for program results or output) or a
simple string variable or nothing at all (NULL string). Restype is
used in a following CASE construct to send the file specified by a
complete drive and path specification in Response back to the Master
computer, or to forward Response as a packetized string utilizing the
Transmit option of Xmodm.Command Xfer. The Master computer expects a
response of this type over the communications line when it detects the
successful command transfer. Note that the normal exit condition for
the Command Xfer loops throughout this function is RxDone or Tx Done.
The Master coMpute- will continue to display responses from the Slave
until a CAN character is received. At this point, the function returns
with the last valid status of the CommandXfer function, and the
communications linl again switches to the beginning state, with the
Slave waiting or, transmissions from the Master. Error indications
other than that in ErrorMsg short circuit the program execution
through this function, send a CAN character to the Master, return the
communications link to its initial state, and leave the function with
an error status,

j. Reset-Remote
(",r Type: Procedure
12) Purpose: This subprocedure of the Comms_Function

allows the operator to recover control o4 the Slave computer if
synchronization is lost over the communications link.

(-) Description of Parameters: None.
(4) Subroutines Called:

Update.Status (local to CommsFunction)
,mcdm. Send CAN

1/;_ Process Description
This procedure sends four CAN characters out on

the communications lin to the Slave. The Process Command 4unction
ldecribed above'- is sersitive to the receipt of CAN characters and
will e, it the ._,nztior, early with an error status. The calling program

74

simply loops into the Process-Command function again and awaits a
command.

k. RemoteCommand
(1) Type: Function
(2) Purpose: This subfunction of CommsFunction

function accomplishes one cycle of a Master to Slave command and
response over the communications port.

(3) Description of Parameters: The function is
entered with a string containing the command to be executed. The
function returns to the calling program an enumerated state variable
defined in the Unit Xmodm depending on the successful dispatch and
execution of a command by the Slave computer, or an indication that a
local operator has aborted the sequence by depressing a key. The
keypressed indication is typically all that is of interest, since the
function normally called repeatedly.

(4) Subroutines Called:
System. ReadKey
Xmodm. Command Xfer
Xmodm. Stringto buf

. Process Description
This function is currently called by GetEquip to

perform a single command cycle; or Rlogin to repeatedly cycle and allow
the operator to remotely operate the Slave computer from the Master
keyboard in a manner similar to the DOS prompt. It does so in this
sequence: First, a loop is entered that repeatedly calls the function
Xmodm.Command Xfer to pass the command string to the Slave. On
successful transmission (status = Tx_done), function
Xmodem.GetResponse displays the packetized response from the Slave on
the Master monitor window. The Master continues to display responses
from the Slave until the Slave sends a CAN character, indicating
comg'etiocr of the all responses, or the Master operator depresses a key
to break the cycle. At this point, the function returns with a boolean
indi--rtior, of the success of the transfer
(TRUE = success, FALSE for any keypress during the cycle).

1. Rlogin
(1) Type: Procedure
(2) Purpose: This subprocedure of the CommsFunction

function cycles the Remote Command function and allows operator input
of commands to the Slave until aborted by the operator.

(3) Description of Parameters: None.
(4) Subroutines Called:

Update.Status (local to Rlogin)
CRT. ClrScr
Distrib. Remote Command
Distrib.Reset Remote
Distrib. OperatorInput
Wndow. Open Window

Wndow. Close Window
Wndow.Set Window

75

(5) Process Description
At the beginning, this procedure opens a full

screen window to display all responses from the Slave in much the same
way a local operator would view them. The procedure then calls
Remote-Command initially with a command string requesting a prompt from
the remoce system so that the operator can determine the current
directory of the Slave. If that succeeds, the Master operator is
prompted for a command to send to the Slave by Operator_Input. Remote
processing may be terminated by entering an exclamation point ("!")
whereupon the operator is asked to confirm the termination. Remote
processing also terminates if Rlogin returns a FALSE result. On exit,
the procedure closes the monitor window and exits.

m. RxFile
(1) Type: Procedure
(2) Purpose: This subprocedure of the Comms Function

function initiates a file transfer from the Slave to the Master by
using an adaptive file transfer program, Zcopy.

(3) Description of Parameters: None.
(4) Subroutines Called:

Update.Status (local to Rlogin)
CRT.ClrScr
Distrib. Remote Command
Distrib. Operator_Input
System. Exec
Wndow.OpenWindow
Wndow. CloseWindow
Wndow.GetWindow
Xmodm. String to buf

(5) Process Description
This procedure opens a full screen window to

display the operation of the Zcopy file transfer program, and prompts
the operator for the name of the file to receive. This file is assumed
to be in the current directory of the Slave unless a full path is
specified. Once the file name is obtained, a command string is
assembled to send to the Slave to initiate the transfer. The procedure
is terminated if the command transfer is interfered with by a keypress
at the Master. Once the Slave acknowledges receipt of the command, the
Master initiates the Zcopy program locally, using a different format to
operate as a server under the temporary control of the Slave. The
operator is provided prompting information from the Zcopy program in a
fll screen window if a file must be overwritten or Zcopy
synchronization is not achieved. Once completed or terminated, the
procedure displays the Zcopy display output from the Slave computer for
error diagnostics (if needed), closes all opened windows and exits.

n. TxFile

(1) Type: Procedure
2) Purpose: This subprocedure of the Comms Function

function irtiates a file transfer from the Master to the Slave by
Lss:r; &r adaptive file transfer program, Zcopy.

76

(3) Description of Parameters: None.
(4) Subroutines Called:

Update.Status (local to Rlogin)
CRT.ClrScr
Distrib.RemoteCommand
Distrib.Operator_Input
System.Exec
Wndow.OpenWindow
Wndow. CloseWindow
Wndow. GetWindow
Xmodm. Stringto-buf

(5) Process Description
This procedure opens a full screen window to

display the operation of the Zcopy file transfer program, and prompts
the operator for the name of the file to transmit. This file is
assumed to be in the current directory of the Master unless a full path
is specified. Once the file name is obtained, a command string is
assembled to send to the Slave to initiate the transfer. The procedure
is terminated if the command transfer is interfered with by a keypress
at the Master. Once the Slave acknowledges receipt of the command, the
Master initiates the Zcopy program locally, operating as a file
transfer master with the Slave operating as a Slave. The operator is
provided prompting information from the Zcopy program in a full screen
window if a file must be overwritten or Zcopy synchronization is not
achieved. Once completed or terminated, the procedure displays the
Zcopy display output from the Slave computer for error diagnostics (if
needed), closes all opened windows and exits.

o. 6etEquip
(1) Type: Procedure
(2) Purpose: This subprocedure of the CommsFunction

function displays the communications port and floppy disk configuration
of the Slave computer.

(3) Description of Parameters: None.
(4) Subroutines Called:

Update.Status (local to Rlogin)
CRT.ClrScr
Distrib. Remote Command
Distrib. OperatorjInput

Wndow. OpenWindow
Wndow.CloseWindow

(5) Process Description
Utilizing the Remote-Command function, this

procedure dispatches the command string "Equip" to the Slave, which is
processed in the Slave program to obtain BIOS information via BIOS call
$11. On e,it, the procedure closes the remote monitor window and
exits.

p. CommsFunction
(11 Type: Function

77

(2) Purpose: To process operator requests to
initialize COM ports, transfer files between Master and Slave
computers, remotely operate a Slave computer, or reset the connection
between computers.

(3) Description of Parameters: The function returns
to the calling program an enumerated state variable defined in the Unit
Xmodm depending on the successful dispatch of a command to a Slave
computer and the receipt of the response, or an indication that the
local operator has aborted the operation by pressing a key. The
keypressed indication normally allows the operator to make another
selection or to leave this function.

(4) Subroutines Called:
Update.Status (for local display of the system

state)
CRT.ClrScr
CRT.GoToXY
Distrib. RemoteCommand
Distrib.Rlogin
Distrib.Rx File
Distrib. TxFile
Distrib. GetEquip
System. ReadKey
Wndow.Open_Window
Wndow. CloseWindow
Wndow.GetWindow
Wndow. ProcessWindow
Xmodm.Buf to String
Xmodm. CommandXfer
Xmodm. SendCAN
Xmodm. String to-buf
Xmodm. Respondbyfile

(5) Process Description

This function opens a window showing the
parameters for the current communications port, and a second window to
allow the operator to select one of the following functions:
Initialize a port, change to a different port and enable the receive
interrupts, disable a receive interrupts for a port, send a file to the
Slave computer, receive a file from the Slave, obtain the port and disk
configuration of the Slave, operate the Slave remotely, reset the
current Xmodem lint, and leave the function. It does so by calling one
of the following procedures or functions local to Comms Function by a
CASE selection: Distrib.RemoteCommand, Distrib. Rlogin,
Distrib.R , File, Distrib.TxFile, Distrib.GetEquip.

q. DOS-Shell
(1) Type: Procedure
(2) Purpose: This procedure spawns a copy of the

MS-DOS command processor to allow the operator of the Master computer
to perform DOS functions while retaining the control program. Control
is returned to the Master program on exiting the secondary processor.

(7) Description of Parameters: None.

78

(4) Subroutines Called:
CRT.ClrEOL
CRT.ClrScr
CRT.Delay

Distrib.FindEnvironment
Support.OK

System. ChDir

System. GetDir

System. Exec
Wndow.Open Window
Wndow.CloseWindow

(5) Process Description

The procedure first locates a copy of the DOS

command processor by finding the "COMSPEC=" path specification in the

current environment. This is established on startup of the computer

and is normally passed down to the application program for its use.

Once this complete file specification is obtained, the operator is

informed that the DOS shell will be activated and a full screen window

is opened to save the current screen. When the operator terminates the

secondary command processor by entering "EXIT" at the prompt, the
procedure restores the original disk drive and directory, notes any DOS

errors returned, and returns to the terminal screen. If the COMSPEC

enironment parameter cannot be found, the procedure informs the

operator, obtains acknowledgment, and exits.

r. HandleALTKey
(!) Type: Procedure

.2) Purpose: This procedure dispatches the program to

e particular function selected by the operator as an ALT-key. A help
display is also provided as offered on the status line.

(3) Description of Parameters: B is the high order

byte read from the keyboard and is used as a CASE selector
(4) Subroutines Called:

CRT.CIrEOL

CRT.CIurScr
CF'T.Delay

DataCom. RSBreak
Distrib. Change DC Parameters

Distrib.Comms Function

Distrib.Dialing Directory
Distrib. Dirs
Distrib.DOS Shell

Distrib. Hangup

Distrib.Handle_ALT Key (the procedure calls itself

afte- processing the help menu)
Support. BuildStatus_Line

Support. Modi fyEntry

Support. OK
System. ChDir
Wndow. Beep

79

Wndow. CloseWindow
Wndow.Open Window
Wndow.ProcessWindowMenu
Xmodm.TransferFile

(5) Process Description
The functions offered by this procedure are:
Alt-A: Change Drive and Path
Alt-B: Send a Break signal out of the current COM

port
Alt-C: Clear the screen
Alt-D: Dial a telephone number and connect by

modem
Alt-E: Toggle the local Echo for half duplex

communications
Alt-F: Change the default communications

parameters
Alt-G: Show the current directory
Alt-H: Hang up the modem
Alt-L: Open the DOS Shell
Alt-M: Activate the Master
Alt-P: Activate the Master
Alt-R PgDn: Receive a file via Xmodem
Alt_S: Activate the Server
Alt-T, PgUp: Transmit a file via Xmodem
Alt-X: Terminate the program
Home: Display a help screen of these commands and

allow selectior, by menu bar

s. TTY
(I) Type: Procedure
(2) Purpose: This procedure provides a teletype

emulation augmented by ANSI control functions.
(3) Description of Parameters: ANSI TRUE indicates

the procedure acts as an ANSI terminal emulator.
(4) Subroutines Called:

WriteLF (process a line feed)
DOS Interrupt $10 (Video Display)
CRT.ClrScr
CRT.Delay
Wndow. OpenWindow
Wndow. CloseWindow
Support. OK
System. ChDir
System. GetDir
System. Exec

(5. Process Description
The procedure filters characters generated by the

eyboard and arriving from the communications port in the terminal mode
to emu:late an ANSI terminal. ALT-key combinations are intercepted from
the keyboard and processed by HandleALT Key.

8(O

APPENDIX E

MAINTENANCE MANUAL FOR UNIT DATACOM

A. UNIT DATACOM

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description

Provides all procedures and functions needed to
initialize the computer serial communications ports, enable and disable
receive interrupts, provide buffered reception of characters, clear the
receive buffer(s), send or receive bytes through the ports, send a
BREA[signal over the RS-232 port, and nondestructively read the
receive buffer(s). Supports Unit Xmodem and the terminal portion of
Distrib. The currently selected communications port is contained in
public variable CurrentCom.

2. Subroutines Contained

a. Disable Interrupts
(1) Type: Procedure
(2) Purpose: To permit a Pascal procedure to disable

system interrupts.
(3) Description of Parameters:

Input: None.
Output: System interrupts are disabled.

(4) Subroutines Called:
Inline assembly.

(5) Process Description
The assembly instruction to mask off interrupts at

the CPU is inserted into the code stream at compile time.

b. Enable-Interrupts
(1) Type: Procedure
(2) Purpose: To permit a Pascal procedure to enable

system interrupts.
(3) Description of Parameters:

Input: None.
Output: System interrupts are enabled.

(4) Subroutines Called:
Inline assembly.

81

(5) Process Description
The assembly instruction to unmask interrupts at

the CPU is inserted into the code stream at compile time.

c. RS232_ISRI
(1) Type: Procedure
(2) Purpose: The interrupt service routine for

communications port one.
(3) Description of Parameters:

Input: An interrupt vector call initiated from
communications port one.

Output: The received character is placed in a
buffer.

(4) Subroutines Called:
DataCom. DisableInterrupts
DataCom. EnableInterrupts

System. Port
(5) Process Description

System interrupts are temporarily turned off to
service this interrupt. The UART Line Status Register for
communications port one is read to record any error indications, then
the Receive Buffer Register is read to place the character in the
receive buffer. The buffer tail pointer is advanced and an End of
Interrupt command is sent to the Programmable Interrupt Controller to
signal the end of the interrupt service call.

d. RS232_ISR2
(1) Type: Procedure
(2) Purpose: The interrupt service routine for

communications port two.
(3) Description of Parameters:

Input: An interrupt vector call initiated from
communications port two.

Output: The received character is placed in a
buffer.

(4) Subroutines Called:
DataCom. DisableInterrupts
DataCom. Enablelnterrupts
System. Port

(5) Process Description
System interrupts are temporarily turned off to

service this interrupt. The UART Line Status Register for
communications port two is read to record any error indications, then
the Receive Buffer Register is read to place the character in the
receive buffer. The buffer tail pointer is advanced and an End of
Interrupt command is sent to the Programmable Interrupt Controller to
signal the end of the interrupt service call.

e. RSBreak
(1) Type: Procedure

82

(2) Purpose: To instruct the UART on the currently
selected communications port to send and RS-232 BREAK signal.

(3) Description of Parameters:
Input: Current Com (public)
Output: A break signal is generated on the

currently selected communications port.
(4) Subroutines Called:

CRT.Delay
System. Port

(5) Process Description
This process ORs the current contents of the UART

Line Control Register with constant LCRBREAK to instruct the UART to
send a constant space on the output line. A UART receiving this will
set its LSR BREAK to signal a BREAK received. After a delay of about
1/5 second, the line is restored.

f. RS232_Avail
(I) Type: Function
(2) Furpose: Informs the calling program that

received characters are available to be read from the current
communications port.

17 Description of Parameters:
Input: Current Com (public)
Output: TRUE if characters available, FALSE

!) Subroutines Called: None.
(5) Process Description

The bu;er pointers RSBufHead C Current Corn]
an! R_&L_=il C CurrentCorn] will be equal if the buffer is empty,
thE fQ-ctior retLrns the result of this test.

g. Purgeline
M1) Type: ProcedarE
(2) Furpose: Dump the receive buffer and clear the

UAT' receive registers. Used to clear the communications line prior to
Dn imoden, ovet receotion (Christensen, 1962, p. 3).

.3) Descriotior o; Parameters:
Inout: CurrentCom (public)
Output: The internal buffers are cleared.

4: Subroutines Called:

System. Fort
(5 Process Description

The buffer pointers RS_Buf_Head E Current_Com I
a ny P Teii E Currert _Com 3 are both set to their initial
conditions (zero and the UART receive reoister is read to reset any
perdirg receive interrupt.

h. Connected
Wil Type: Function

(2) Purpose: Returns TRUE if the currently selected
communications port is receiving a hardware handshaking signal,
indicating the presence of a modem or a directly connected computer.

(3) Description of Parameters:
Input: Current_Com (public)
Output: TRUE if connected, FALSE otherwise.

(4) Subroutines Called:
System.Port

(5) Process Description
The UART Modem Status Register is read to detect

the presence of Data Carrier Detect. This line is normally TRUE if a
modem or computer is connected

i. RS_232_Peek
(1) Type: Function
(2) Purpose: Nondestructive read of the receive

buffer of the current communications port. Used to assist Xmodem
synchronization in Unit Xmodm.

(3) Description of Parameters:
Input: Current_Com (public)
Output: The next available received character.

(4) Subroutines Called:
CRT.Delay

(5) Process Description
The receive buffer pointers are compared for the

currently selected communications port. If unequal, a character is
available. If equal, a short delay is run and the test is repeated.
Wh-en a character is available, it is returned from this function
without disturbing the pointers.

j. RS_232In
(1) Type: Function
(2) Purpose: Read the next character from the the

receive bu;+er of the current communications port. Used for all port
reads.

() Description o€ Parameters:
Input: CurrentCorn (public)
Output: The next available received character.

(4' Subroutines Called:
CRC.Delay

(5) Proce-s Description
The receive buffer pointers are compared for the

currently selected communications port. If unequal, a character is
available. If equal, a short delay is run and the test is repeated.
When a character is available, it is returned from this function and
the buffer head pointer is advanced.

k. RS 232_Out
(1) Type: Procedure.

84

(2) Purpose: Send a character out of the currently
selected communications port. Used for all port writes.

(3) Description of Parameters:
Input: CurrentCom (public); and Param, the

character to be sent.
Output: The character is sent to the port.

RSError (public) is cleared.
(4) Subroutines Called:

CRT.Delay
System. Port

(5) Process Description
The UART Line Status Register is checked on the

currently selected communications port to see if the last character has
been sent. If not, a short delay is runand the test is repeated. When
the buffer is clear, the port Modem Control Register Request To Send
and OUT2 lines are set to insure the hardware is prepared to send a
character. Next, the corresponding Data Set Ready and Clear To Send
status lines are checked and short delays run until they are true, if
the options are selected. Last, the character is sent to the port and
the error flag is cleared.

1. Enable
(1) Type: Procedure
(2) Purpose: Enable receive interrupts for a

communications port.
(3) Description of Parameters:

Input: IRQ.
Output: The proper Interrupt Mask Bit in the

Programmable Interrupt Controller is cleared for the communications
cort.

(4) Subroutines Called:
System. Port

(5) Process Description
The procedure masks off the selected bit in the

PIC Interrupt Mask Register.

m. Disable
(1) Type: Procedure
(2) Purpose: Disable receive interrupts for a

communications port.
(3) Description of Parameters:

Input: IRG.
Output: The proper Interrupt Mask Bit in the

Programmable Interrupt Controller is set for the communications port.
(4) Subroutines Called:

System. Port
(5) Process Description

The procedure sets the selected bit in the PIC
Interrupt Masi Register.

85

n. Establish
(1) Type: Procedure
(2) Purpose: Enable the Data Terminal Ready, OUTT2 and

Request To Send handshaking bits on the selected communications port.
(3) Description of Parameters:

Input: Com, the communications port to be
enabled.

Output: The appropriate lines are set.
(4) Subroutines Called:

System. Port
(5) Process Description

The OR combination of the Data Terminal Ready,
OUT2 and Request To Send handshaking bits are set.

o. SendEOI
(1) Type: Procedure
(2) Purpose: Sends a specific End Of Interrupt

command to the 8259 Programmable Interrupt Controller to indicate that
a particular interrupt h's been se-viced.

(3) Description of Parameters:
Input: IRQ, the interrupt serviced.
Output: The Interrupt Service Register bit for

the specific interrupt is cleared.
(4) Subroutines Called:

System. Port
(5) Process Description

The bit for specific interrupt is OR'd with $60

and sent to the PIC.

p. ResetChip
(1) Type: Procedure
(2) Purpose: To shut down a communications port.
(1) Description of Parameters:

Input: Com, the port to be disabled.
Output: The port is cleared, all handshaking

lines are cleared, and interrupts are disabled on the UART.
(4) Subroutines Called:

System. UpCase
System. Length

(5' Process Description
The UART Line Status Register is read repeatedly

to clear all receive buffers. The system interrupts are disabled to
prevent further interrupts from this port. The interrupts from the
UART are disabled, and all port handshaking lines are dropped. The
Programmable Interrupt Controller interrupt enable line for this port
is reset. System interrupts are then restored.

q. RS232_Init
(1) Type: Procedure

(2. Purpose: Initialize the selected communications
port.

86

(3) Description of Parameters:
Input: COM, the port to be initialized; and

Params, the port parameter word.
Output: The port is initialized.

(4) Subroutines Called:
DOS.Intr($14), the communications port service

interrupt.
(5) Process Description

Com is adjusted to satisfy the requirements of
Intr($14) and register DX loaded with the communications port to be
initialized. The packed word, Params, is loaded into register AX and
the interrupt is called.

r. SelectBitRate
(1) Type: Procedure
(2) Purpose: Initialize the selected communications

port. (3) Description of Parameters:
Input: COM, the port to be initialized; and

Speed, the data rate for the port.
Output: The port is initialized.

(4) Subroutines Called:
System. Port
System. Portw

(5) Process Description
The communications port identified by Com is

accessed and its Divisor Latch Access Bit is set to access the bit rate
registers. The Speed parameter is mapped into a 16 bit control word
and placed in the UART Divisor Latch. The Divisor Latch Access Bit is
then cleared and the port is allowed to settle. The current baud rate
setting is stored in the port initialization record for later
reference.

s. SelectWordLength
,l) Type: Procedure
(2) Purpose: Initialize the selected communications

port.
(3) Description of Parameters:

Input: COM, the port to be initialized; and
Length, the word length for the port.

Output: The port is initialized.
(4) Subroutines Called:

System.Port
System. Portw

(5) Process Description
The Speed parameter is mapped into an 8 bit

control word and placed in the UART Line Control Register. The current
length setting is stored in the port initialization record for later
reference.

t. SelectFraming
(1) Type: Procedure

87

(2) Purpose: Initialize the selected communications
port.

(3) Description of Parameters:
Input: COM, the port to be initialized; and Stop,

the number of stop bits for the port.
Output: The port is initialized.

(4) Subroutines Called:
System. Port
System. Portw

(5) Process Description
The Stop parameter is mapped into an 8 bit control

word and placed in the UART Line Control Register. The current stop
setting is stored in the port initialization record for later
reference.

u. SelectParity
(1) Type: Procedure
(2) Purpose: Initialize the selected communications

port.
(3) Description of Parameters:

Input: COM, the port to be initialized; and P,
the type of parity for the port.

Output: The port is initialized.
(4) Subroutines Called:

System. Port
System. Portw

(5) Process Description
The P parameter is mapped into an 8 bit control

word and placed in the UART Line Control Register. The current stop
parity is stored in the port initialization record for later reference.

v. SendString
(1) Type: Procedure.
(2) Purpose: To send an ASCII string of characters

ot the currently selected COM port. Typically used to send command
strings to a modem.

(3) Description of Parameters:
Input: S, the string to be sent.
Output: The string is sent out the currently

selected CON port.
(4) Subroutines Called:

DataCom. RS232 Out
System. Length

(5) Process Description
The string is treated as an indexed array of

characters, and each character is sent to procedure RS23'2- Out in turn.

w. RSInitialize
(1) Type: Procedure.

(2) Purpose: To set the communications port to the
input parameters.

88

(3) Description of Parameters:
Input: Com, the port to be initialized; Speed, an

enumerated type ranging from 110 baud to 9600 baud; Parity, an
enumerated type specifying No Parity, Odd, Even, or Don't Care; The
number of stop bits (1 or 2) and the length of the character word (5,
6, 7 cr 8 bits).

(3) Output: The communications port is initialized.
(4) Subroutines Called:

DOS.Intr($14) (BIOS communications port service)
DOS.SetIntVec
System. Port

(5) Process Description
Com and the input parameters are adjusted for the

BIOS call. The BIOS call initializes the port, however, it also
disables UART receive interrupts. These are enabled separately and the
UART Divisor Latch Access Bit is cleared to insure that further writes
to the UART will set the proper registers. The UART is recycled and
the hardware handshaking lines set. Receive interrupts are enabled at
the UART, and the Programmable Interrupt Controller is enabled for the
current communications port. The proper interrupt vector for this port
is set to point to our interrupt service routine. The settings stored
in data structure CommPort I Com I for future reference by RS_Restore.

X. RSRestore
(1) TypE: Procedure/Function
(2) Purpose: Restores the parameters of the

communications port to the settings stored in data structure CommFort [
Cor). Used after a child process is spawned to recover communications
port operations.

(3) Description of Parameters:
Input: Com, the communications port to be

restored
Output: The selected port is restored.

(4) Subroutines Called:
DataCom. RSInitialize

(5) Process Description
Com and the parameters stored in ComPort E Com I

are used to call RSInitialize.

y. RSEightBits
(1) Type: Procedure
(2) Purpose: To set the current communications port

to eight data bits for Xmodm transfers.
(3) Description of Parameters:

Input: Current Com (public)
Output: The communications port is set for eight

data bits.
(4) Subroutines Called:

System. Port

89

(5) Process Description
The UART Line Control Register is ORed with $03,

setting the number of data bits to eight.

z. RSCleanup
(1) Type: Procedure
(2) Purpose: Disables interrupts for the current

communications port at the Programmable Interrupt Controller.
(3) Description of Parameters:

Input: CurrentCom (public)
Output: The PIC is reset for this interrupt.

(4) Subroutines Called:
System. Port

(5) Process Description
The interrupt mask bit for the current

communications port is set.

aa. HexByte
(1) Type: Function
(2) Purpose: Converts a byte into its hexadecimal

string equivalent for the Unit Exit procedure.
(3) Description of Parameters:

Input: B, the byte to be converted.
Output: A string of length two.

(4) Subroutines Called: None.
(5) Process Description

The byte is first shifted right four bits to
consider only the high order bits, and a character indexed from the
hexadecimal sequence HexDigit. This is concatenated with the character
produced by indexing HexDigit by the low order four bits of B to form
the two digit hex equivalent.

ab. HexWord
(1) Type: Function

(2) Purpose: Converts a word into its hexadecimal
string equivalent for the Unit Exit procedure.

(3) Description of Parameters:
Input: I, the word to be converted.
Output: A string of length four.

(4) Subroutines Called:
DataCom. HexByte.
System. Hi

System. Lo
(5) Process Description

HexByte is called with both the high and low order
bytes of the word, and the resulting function results concatenated to
produce a four digit hex equivalent.

ac. DataCommError
(1) Type: Procedure

90

(2) Purpose: Provides a robust means of handling
program faults while still insuring that interrupts are restored.

(3) Description of Parameters:
Input: System variables ExitCode, a word that

gives an indicaton of why program termination occured; and ErrorAddr, a
pointer containing a runtime error address if nonzero;

Output: The procedure writes any error messages
desired to the display and resets any interrupt vectors to their state
before program execution.

(4) Subroutines Called:
Dos. SetlntVec
System. Assign
System. Rewrite
DataCom. Hex

(5) Process Description
This procedure is chained in to the normal exit

processing that the compiler installs for the unit and the unit
initialization code. It must be compiled using the Far Call model to
be accessible by the program runtime library. The procedure first
checks ExitCode and ErrorAddr for abmormal program termination and sets
Output to the standard file output for display to allow error message
display. The procedure then reports a USER BREAK or runtime error and
address if applicable. The program then insures any interrupt vectors
are restored and the communications ports are shut down. The
Programmable Interrupt Controller Interrupt Mask Register is restored
from a saved location. Finally, the original exit code for this unit
is restored from a saved location for use by the runtime system
(TurboPascal Owner' Handbook, pp. 369-37)).

ad. DataCom Unit Initialization Code
(1) Type: Procedure
(2) Purpose: Initializes the Unit, stores critical

vectors and registers for restoration on program termination.
(.) Description of Parameters:

Input: System variables ExitProc, a pointer that
gives the address of the DataCom unit exit procedure in the rLntime
library.

Output: The procedure DataCommError is linked in
before the runtime exit procedure to accomplish an orderly termination
of the unit.

(4) Subroutines Called:
Dos. Get IntVec
System. Port

(5) Process Description
The procedure first sets CRT.CheckBreak to TRUE to

allow user termination of the program. A pointer to the runtime exit
procedure is saved, as well as the current settings for the
Programmable Interrupt Controller Interrupt Mask Register for
restoration on exit. GetlntVec is used to save the current interrupt
vectors for communications ports one and two for restoration on exit.
The coMMnnlcetions port buffers are cleared, and the unit supplied exit

91

procedure DataCommError is linked in to the runtime system
(TurboPascal Owner' Handbook, pp. 369-370). Finally, the two
communications ports are assigned default parameters, although not
initialized at this time.

92

APPENDIX F

MAINTENANCE MANUAL FOR UNIT DIRECTOR

A. UNIT DIRECTOR

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description

Director is a set of functions and procedures that
allow the output MS DOS file directories to a windowed environment.
Masking options and a selector for normal or abbreviated (similar to
the MS-DOS /w switch) displays are allowed.

2. Subroutines Contained

a. StandBy
(1) Type: Procedure
(2) Purpose: Used internally by ShowDir, this

procedure displays an operator prompt to pause long listings. The
procedure exits when a key is pressed.

(3) Description of Parameters:
Input: Operator input from System.ReadKey
Output: Prompt information to the window supplied

by the calling program.
(4) Subroutines Called:

CRT.GoToXY
CRT.HighVideo
CRT.WhereX
CRT.WhereY
System. ReadKey

(5) Process Description
The procedure notes the position of the cursor,

writes a prompt to the operator, and waits until the operator presses a
key. The procedure then blanks the prompt, and exits.

b. ViewDir
(1) Type: Procedure
(2) Purpose: Provides the selective display of a

directory, with the filenames and subdirectories displayed in summary
form (no date, size or attribute data).

(3) Description of Parameters:
Input: MatchPtrn, which specifies the path and

wildcerd options; FromLine and ToLine, which specify the window size.

9-7

Output: To the window supplied by the calling
program.

(4) Subroutines Called:
CRT.GoToXY
CRT.HighVideo
CRT.Lowvideo
DOS.FindFirst
DOS.FindNext

(5) Process Description
The procedure positions the cursor at column one

of the line specified in FirstLine, then utilizes the procedure
FindFirst to find any file or directory matching MatchPtrn. This sets
up the DOS unit for subsequent searches. The first entry found is
displayed and then FindNext is used for subsequent entries until the
directory is exhausted. Subdirectories are displayed in highlighted
video for ease of recognition in this summary display.

c. WriteEntry
(1) Type: Procedure
(2) Purpose: Displays the complete file or directory

information of attributes, size, date and time for procedure ShowDir.
(Th Description of Parameters:

Input: DirInfo, a DOS Unit structure that
contains packed information about the most recently found directory
entry; line, the window line to display the information on. Output:
To the window supplied by the calling program.

(4) Subroutines Called:
GetAttribut
CRT.Go~cXY
CRT.HighVideo

CRT.Lowvideo
DOS.FindFirst
DOS.PindNext
DOS. UnPackTime

(5) Process Description
The procedure calls library procedures in the DOS

unit to unpack the time entry in DirInfo. GetAttribut maps the
attribute order to a string repre.entation. The name, ".:DIR..
designation or file size, creation date and time, and the attribute
string are then written on the display at Line in MS-DOS format.

d. GetAttirbut
(1) Type: Procedure
(2) Purpose: Map an MS-DOS attribute number to a text

string.
(3) Description of Parameters:

Input: attr, the ordinal MS-DOS attribute
combination.

Output: attribut, a string to return the text
string representation of the attribute.

(4) SubroUtines Called:

System. Str

94

(5) Process Description
The attr variable is used as a selector in a case

construct to load attribut with the proper string. If the variable
does not map, the hexadecimal number in the variable attr is converted
to a string for display.

e. Show Dir
(1) Type: Procedure
(2) Purpose: Provides the selective display of a

directory, with the filenames and subdirectories displayed in summary
form (no date, size or attribute data).

(7) Description of Parameters:
Input: MatchPtrn, which specifies the path and

wildcard options; FromLine and ToLine, which specify the window size;
error, which reports DOSerror back to the calling program.

Output: To the window supplied by the calling
program.

(4) Subroutines Called:
CRT.CIrEOL
CRT.ClrScr
CRT.GoToXY
CRT. HighVideo

CRT.Lovideo
Director. WriteEntry
DOS.FindFirst
DOS.FindNext
System. INC

(5) Process Description
The procedure utilizes the procedure FindFirst to

find any file or directory matching MatchPtrn. This sets up the DOS
unit for subsequent searches. Depending on the state of DOS.DOSError,
which indicates error conditions on the attempt to find a directory
entry, the entry is either displayed via WriteEntry or an error or
status message is displayed and the procedure exits. The first entry
found is displayed and then FindNext is used for subsequent entries
until the directory is exhausted. For directories that exceed the
window size specified by FromLine and ToLine, the display is paused by
a cai: to the procedure StandBy and the operator is allowed to press a
key to continue.

95

APPENDIX 6

MAINTENANCE MANUAL FOR UNIT ERRORCOD

A. UNIT ERRORCOD

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description

ErrorCod is a array of string constants mapped by the
DOS Error Code, Error Class, Recommended Error Action and Error Locus
indices found in (Microsoft, 1986, pp. 3-1 - 3.11, 4.254 - 4.255). The
unit is used by the units Parser, Spawn and the program Distrib to
report errors. A procedure is also provided to retrieve extended error
code information available in MS-DOS versions 3.0 and above by DOS
Function call $59.

2. Subroutines Contained

a. ExtendedErrorCode
(1) Type: Procedure
(2) Purpose: To return the extended error code, class

and locus information available in MS DOS version 3.0 and later, in
response to a DOSERROR result.

(3) Description of Parameters: ExtendedErrorCode
returns the Error Code, Error Class and Error Locus in the respective
variables.

(4) Subroutines Called:
DOS. Intr($21)

(5) Process Description
This procedure calls DOS function $59 with

register BX = 0 to get extended error information from MS DOS following
an operating system error flag, as indicated by the Turbo Pascal
variable DOSERROR . 0.

96

APPENDIX H

MAINTENANCE MANUAL FOR UNIT GENERAL

A. UNIT GENERAL

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description

General is a collection of general purpose routines
that support the Wndow Unit and other modules.

2. Subroutines Contained

a. FillWord
(1) Type: Procedure
(2) Purpose: Given a variable, V, the procedure fills

Num words in the variable with integer Value.
() Description of Parameters:

Input: Variable V; Num, the number of words to be
filled; and Value, the fill value.

Outputi V is returned after filling.
(4) Subroutines Called:

Inline assembly
(5) Process Description

Register DI is initialized with the starting
clfset of the variable V, CX contains the number of words to be filled,
and AX contains the Value to be used to fill. The STOSW instruction
autoincrements the EI register after each store and decrements CX. The
loop ends when CX = 0. Using assembly language string processing
instructions, the procedure uses the DI index register to point to the
memory iterates a store operation with the 16 bit word Value beginning
at the first location in V and continuing for Num iterations,
incrementing the storage location by a 16 bit word each time.

b. Exchange

(1) Type: Procedure

2) Purpose: Exchange the contents of two variables
without compatibility checking.

(7) Description of Parameters:
Input: S, D are the variables to be exhanged, and

L is the number bytes to be exchanged.

P7

Output: The variables S and D are returned after
the exchange.

(4) Subroutines Called:
Inline assembly

(5) Process Description
Register DI is loaded with the offset of variable

S, register SI with that of D. CX receives L. The value at variable
D, indexed by DI, is loaded into AX and exchanged with the value at
variable S, indexed by SI. STOSB autoincrements both index registers
and decrements CX. The loop stops as CX reaches 0.

c. Beep
(1) Type: Procedure
(2) Purpose: Produce a speaker tone for 1/4 second.
(3) Description of Parameters:

Input: Freq, the desired tone frequency.
Output: A speaker tone.

(4) Subroutines Called:
CRT. Delay
CRT. Sound
CRT. NoSound

(5) Process Description
CRT procedures NoSound and Sound operate in

tandem. First the speaker is silenced. Then, the Sound procedure in
the CRT Unit is called with parameter Freq and a delay of 1/4 second is
allowed before turning the speaker off again.

d. Max
'1) Type: Function

(2) Purpose: Returns the larger of two integers.
Typically used with OpenWindow to insure the window is large enough to
hold a menu display.

(7 Description of Parameters:
Input: X, Y, the integers to be compared.
Output: The larger integer of the input

paramete-s.
(4) Subroutines Called: None.

(5) Process Description
The two integers are compared and the function

result equated to the larger.

e. Min
(1) Type: Function
(2) Purpose: Returns the smaller of two integers.

Typically used with Open-Window to insure the window is large enough to
hold a menu display.

t7) Description of Parameters:
Input: X, Y, the integers to be compared.
Output: The smaller integer of the input

parameters.
(4) Subroutines Called: None.

98

(5) Process Description
The two integers are compared and the function

result equated to the smaller.

f. Cursor Size
(1) Type: Function
(2) Purpose: Sets the cursor displayed as either an

underline or a block.
(3) Description of Parameters:

Input: Cursor-Type an enumerated type consisting
of line, block or invisible. Mono is TRUE if the display is
monochrome, FALSE if color.

Output: The video card is updated to display the
selected cursor.

(4) Subroutines Called:
DOS.Intr($10) (video service)

(5) Process Description
Register AX is set to $10 to call the BIOS video

service, and the CX register is set to the proper value for the cursor
requested prior to the call.

g. Get-Time
(1) Type: Function
(2) Purpose: Returns a string with the current time.
(3) Description of Parameters:

Input: Nothing.
Output: A string with the current time in format

HH:MM:SS xM.
(4) Subroutines Called:

DOS.Intr($21) (DOS service)
System. Str

(5) Process Description
Register AH is set to $2C to call the DOS time

service, and the CH, CL, DH and DL return the ordinal number for hours,
minutes, seconds and hundreths of seconds (Norton, 1985, p. 267). The
Turbo Pascal Str procedure is used to convert each number into a string
representation. The strings are then concatenated with formatting
characters and AM or PM notations.

99

APENDIX I

MAINTENANCE MANUAL FOR UNIT MISCPACK

A. UNIT Miscpack

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description

Miscpack is a collection of data types and utility
routines supporting these other units: Xmodm, Parser, Spawn, Redirect,
and the main program Distrib. The strong typing features of Turbo
Pascal require that instances data types in different units that must
be equated be declared in one place to be compatible at compile time.

2. Subroutines Contained

a. BumpStrup
(1) Type: Procedure
(2) Purpose: To convert any string to upper case

characters.
(3) Description of Parameters: S is the formal

variable for a string of any length, since length checking is relaxed.
(4) Subroutines Called:

System. UpCase
System. Length

(5) Process Description
This procedure returns the string as a call by

reference parameter after converting all of the characters making up
the string to uppercase.

1 0

APPENDIX J

MAINTENANCE MANUAL FOR UNIT PARSER

A. UNIT PARSER

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PU/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description

The central procedure in this unit is ParserMain,
which attempts to parse and execute an MS-DOS style command on the
local machine. The remaining procedures and functions support this
function.

2. Subroutines Contained

a. argc
(1) Type: Function
(2) Purpose: Returns the number of arguments in the

command line parsed by the procedure Parse. Parse must be called
before this function is valid.

(3) Description of Parameters:
Input: None.
Output: The number of arguments in the command

line last parsed.
(4) Subroutines Called:
(5) Process Description

argc is set to the variable argcount, which is
loaded by Parse.

b. argv()
(1) Type: Function

(2) Purpose: Return the argcount'th argument
encountered on the last command line parsed by procedure Parse. Parse
must be called before this function is valid.

(3) Description of Parameters:
Input: argcount, the index of the argument

desired, argarray, the index to the arguments indexed, and arg string,
a copy of the command.

Output: A string, up to 128 characters long,
containing the argcount'th argument.

(4) Subroutines Called: None.

101

(5) Process Description
Following a call to procedure Parse, the data

structure argarray is loaded with the relative index of the start of
each argument in the command line parsed, and the length of that
argument. A length of zero at that index indicates no argument was
found. To construct the argcount'th argument, the command saved in
argstring is copied starting at the index saved in the index field in
the argcount'th record of array argarray, for the length field in the
same record.

c. InitParse
(1) Type: Procedure
(2) Purpose: To parse the input string for

Parser_Main, and initialize the component strings for later use.
(3) Description of Parameters:

Input: Commands, an input parameter for
Parse-Main.

Output: Pathspec is set to argv(O), the remaining
drive, node, and name strings are parsed.

(4) Subroutines Called:
Parse.argv(O)
Parse. ParseName

(5) Process Description
This procedure is local to Parse Main, and is used

any time the command string being parsed is first parsed, or after the
command has been modified.

d. Parse
(1) Type: Procedure
(2) Purpose: Set up the argv and arc functions for a

command line received.
(3) Description of Parameters:

Input: Command, a string variable containing the
command to be parsed.

Output: argarray and argcount are private
variables visible inside this unit.

(4) Subroutines Called:
System. Inc
System. Length

(5) Process Description
First, a copy of the command is retained outside

this procedure in argstring for later use by argv. Argarray is then
initialized to clear ola parsing actions, and argcount is initialized
to zero to act as an index for arg array. The cycle begins by skipping
leading whitespace in the command. When the first non whitespace
character is encountered, the index of the string is noted in the
arg-coLnt'th record of argarray and non whitespace characters are
skipped while incrementing the length field to determine the length of
the argument. Upon reaching whitespace again, the next record in
arg array is selected and the cycle repeats until the end of the string

1 C)2

is reached. argarray, arg count and argstring are retained in
variables private to the unit for future ust.

e. ParseName
(1) Type: Procedure
(2) Purpose: Break a complete filename with path and

drive into its component parts.
(3) Description of Parameters:

Input: inName is a composite drive, path and
filename string.

Output: The component file name, extension, name
and extension, path, drive and node (if any) in inName.

(4) Subroutines Called:
System.Copy
System. Delete
System. Length

(5) Process Description
The syntax for inName is:

[Node::][Drive:][\]directory[\directory\3filespec[/Switch], similar to
the MS-DOS command line syntax with the exception of the node
designator, Which was intended for use with commands intercepted by a
background process. The procedure scans the command line backwards,
looking for the delimiters established in the constants Path or drive
and Hode o-_drive. When such delimiters are found, the suceeding
substring is copied into the appropriate output variable and the
command is truncated to continue the scan until the first character is
reached. The filename, if any, is then broken down similarly into its
component name and extension (Swan, pp. 26 - 27).

f. Resolve-Command
(1) Type: Function
(2) Purpose: This procedure is passes the first

argument in a command line and attempts to create a complete path
specification and match the filename to a command normally handled
internally by the DOS command processor or to an executable file in the
specified directory. Relative directory citations are adjusted to a
path from the root directory. Parser Main sets up the component parts
of the first argument via Parse Name and places them in the variables
immediately above this function.

(3) Description of Parameters:
Input: Argurement, the first parameter in the

command line from ParserMain.
Output: Argument, corrected to a complete path

specification and filename extension. The function returns the type of
file detected (batch file, com file, executable file, directory,
pathstring or other file) as an enumerated type.

(4) Subroutines Called:
System. GetDir
DOS.FindFirst
DOS.FindNext

103

(5) Process Description
Resolve-command first determines the current

directory with GetDir, and adjusts any relative directory path
specification found in argument to a full path specification complete
with drive and root directory, if needed. This is needed by the Exec
function called by ParserMain. If no file extension was parsed by
ParseName, ResolveCommand attempts to find an executable file in the
directory cited by the now complete path specification by finding a
file with the same name and an "COM", "EXE", or "BAT" extension. They
are searched for in reverse priority so that the Exec call will attempt
to execute the filename with the highest rank, as Command.Com does
(Mefford, 1988, p. 336) and the file type is identified. If the
command did cite a filename with extension, the file type is
identified. The file type is returned by the function for ParserMain.
If an executable file was not found, a check is made to see if a
directory by that name exists, otherwise a general pathname type is
returned.

g. ParserMain
(1) Type: Procedure

(2) Purpose: This procedure parses a command received
by the Slave and attempts to execute it.

(3) Description of Parameters:
Input: Commands, the received command string.
Output: Response and ErrorMsg are strings

containing either the command output and error messages, respectively,
or filenames containing the information. Restype and Errtype tell the
calling program what Response and ErrorjMsg contain. Prompt is the
local machine cvrrent directory for return to the Master via the
calling program after the response is competed.

(4) Subroutines Called:
Parser. InitParse
Parser. Match Command
Parser. ResolveCommand
Parser. Parse
Parser. ParseName
P'arser.argc
Parser.argv()
Spawn. Match Command
Spawn.Process intrinsic-command
Spawn.Runlocal
System. Length

(5) Process Description
On entry, command-s contains the complete command

to be executed. Its component arguments are isolated by Init 'arse,
and then a special case is checked to see if a simple drive change is
requested (e.g., "C:"). If so, the internal DOS command "CD" is
prefi 2d to the command and it is re-parsed. The filename in the first
argument is checked by Spawn.Match Command against a set of commands
that this program handles internally. This is a subset of the MS-DOS
internil commard=: Change Directory, Copy, Delete, Directory, Erase,

104

Make Directory, Remove Directory, Rename and their abbreviated forms.

If matched, the command is passed to Spawn.Process IntrinisicCommand

for execution and collection of responses. If not, the file type

returned by Resolve Command is used as a case selector to either run an

executable file via Spawn.RunLocal, or a syntax error indication is

returned to the calling program. If executable, the command (program

name) is separated from the following command tail and passed to

Run-Local.

105

APPENDIX K

MAINTENANCE MANUAL FOR UNIT REDIRECT

A. UNIT REDIRECT

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description

Redirect is a set of functions and procedures that
allow the output of programs spawned under the Slave computer's copy of
the main program Distrib to be redirected to files. Once the program
ends, the Slave computer can then forward the output normally displayed
on the screen to the Master computer for display.

2. Subroutines Contained

a. Init Redirect Unit
(1) Type: Procedt-re
(2) Purpose: To reverse the Turbo Pascal

initialization of the Pascal standard files Input and Output to the CRT
Unit in preparation for redirection.

(3) Description of Parameters: None. This procedure
reassigns the Pascal standard files Input and Output.

(4) Subroutines Called:
System.Assign
System. Reset
System. Rewrite

(5) Process Description
The Turbo Pascal Version 4.0 reference manual

indicates that the initialization code found in standard Unit CRT
assigns the Pascal standard test files Input and Output to the CRT
Unit. In order to accomplish I/O redirection, these files must be
rereferenced to the standard input and output. The above subroutines
accomplish this.

b. Duplicate Handle
(1) Type: Function
(2) Purpose: Returns a second handle that refers to

the same file (or device) as the variable Handle. Used to save the
reference to standard I/O for later restoration after redirection ends.

(3) Description of Parameters: Handle is the file
handle to be duplicated. ErrorNum is a variable for an MS-DOS error
code returned in the AX register if the MS-DOS function call fails.

106

(4) 'Subroutines Called:
DOS. Intr($21)

(5) Process Description
The DOS.Intr($21) call is to the DuplicateHandle

function, $45. The function returns another handle of type word.

C. Close File Handle
(1) Type: Function
(2) Purpose: Closes a file handle that refers to a

file or device. Used to terminate I/O to the standard input or output
handle when redirected, and to dispose of the redirection handle.
ErrorNum is a variable for an MS-DOS error code returned in the AX
register if the MS-DOS function call fails.

(3) Description of Parameters: Handle is the file
handle to be closed.

(4) Subroutines Called:
DOS. Intr($21)

(5) Process Description
The DOS.Intr($21) call is to the Close Handle

function, $C3E. ErrorNum is returned with an MS-DOS error code if the
call fails, as indicated by a FALSE function result.

d. Redirect-Handle
(I) Type: Procedure
(2) Purpose: Forces a handle used by the system for

standard input or output to be redirected to the same file or device as
;ncther handle. The file or device originally pointed to may then
closed. I/O to the standard input or output handle now appears at the
same file or device as the handle redirected to.

(3) Description of Parameters: Handle is the file
handle pointig to the file or device to be redirected to, Red-Handle is
the standard I/O handle to be redirected.

(4) Subroutines Called:
DOS. Intr($21)

(5) Process Description
The DOS.Intr($21) call is to the FDupHandle

function, $46. ErrorNum is returned with an MS-DOS error code if the
call fails. On return the redirected standard I/O handle now operates
through the file or device of Handle.

e. RedirectStdOutput
(1) Type: Function
(2) Purpose: Redirects Standard Output tc a file of

our choosing.
(3) Description of Parameters: StdOut is the MS-DOS

standard output file handle to be redirected. StdOutput_FileTemp is
the file that output will be redirected to.

(4) Subroutines Called:
Redirect.DLplicate Handle
Redirect. RedirectHandle

107

(5) Process Description
The temporary output file is opened, a handle

pointing to StdOut is saved and then StdOut is forced to point to our
output file.

f. RestoreStdOutput
(1) Type: Function
(2) Purpose Restores the saved standard Output to

its previous state, sets a variable ResponseFile to the name of the
file holding the redirected output to end redirection.

(3) Description of Parameters: StdOut is the MS-DOS
standard output file handle that was redirected. StdOutputFileTemp
is the file that output was redirected to. SavedStdOut is the handle
that points to the original standard Output.

(4) Subroutines Called:
Redirect.CloseFileHandle
Redirect. RedirectHandle

(5) Process Description
StdOut, the file handle for standard output is

reset to point to SavedStdOut, the temporary file StdOutputFile is
closed for writing, and the variable Response File is set to the name
of the temporary file if no errors are encountered, otherwise NIL.

g. Redirect StdInput
(1) Type: Function
(2) Purpose: Redirects standard Input to be drawn

from a file of our choosing.
(3) Description of Parameters: Stdln is the MS-DOS

standard input file handle to be redirected. StdInputFileTemp is
the file that input will be redirected from.

(4) Subroutines Called:
Redirect. Duplicate Handle
Redirect. RedirectHandle

(5) Process Description

The temporary input file is opened for reading, a
copy of the handle pointing to Stdln is saved and then StdIn is forced
to point to our input file.

h. RestoreStdInput
(1) Type: Function
(2) Purpose: Restores the saved standard Input to its

previous handle, and closes the input file to end redirection.
(3) Description of Parameters: Stdln is the MS-DOS

standard input file handle that was redirected. Std Input File_Temp is
the file that input was redirected from. SavedStdIn is the handle
that points to the original standard Input.

(4) Subroutines Called:
Redirect.CloseFile Handle
Redirect. RedirectHandle

108

(5) Process Description
Stdln, the file handle for standard input is reset

to point to Saved Std In, the temporary file Std InputFile is closed
for reading. The function returns TRUE if no file errors are detected.

i. RedirectStdError
(1) Type: Function
(2) Purpose: Redirects standard Error to be sent to a

file of our choosing.
(3) Description of Parameters: StdErr is the MS-DOS

standard error file handle to be redirected. StdErrorFileTemp is
the file that error will be redirected to.

(4) Subroutines Called:
Redirect.Duplicate Handle
Redirect. RedirectHandle

(5) Process Description
The temporary error file is opened for writing, a

copy of the handle pointing to StdErr is saved and then StdErr is
forced to point to our error file.

j. RestoreStdError
(1) Type: Function
(2) Purpose: Restores the saved standard Error to its

previous handle, and closes the error file to end redirection.
(7) Description of Parameters: StdErr is the MS-DOS

standard error file handle that was redirected. StdErrorFileTemp is
t'he file that Error was redirected tz. SavedStdError is the handle
that points to the original standard Error.

i4) Subroutines Called:
Redirect.Close File Handle
Redirect.Redirect Handle

(5' , rocess Description

StdErr, the file handle for standard error is
reset tc print tc Saved StdError, the temporary file StdError File is
cisEd fo- reading. The function returns TRUE if no file errors are
detected.

k. Redirect_All_Output
I) Type: Function
(2) Purpose: Redirects both standard error and

standard o,_tput to a file of our choosing.
(3) Description of Parameters: StdOut is the MS-DOS

standard output file handle to be redirected. StdOutputFileTemp is
the file that output will be redirected to. StdErr is the MS-DOS
standard errort file handle to be redirected. Std ErrorFileTemp is
the file that output will be redirected to.

(4) Subroutines Called:
Redirect.Duplicate Handle
Redirect. Redirect Handle

(5 Frocess Description
The temporary output file is opened, a handle

pointing tc StdOL.t is saved and then StdOut is forced to point to our

109

output file. The process is repeated for StdErr, except that it is
redirected to the same output file.

1. Restore All_Output
(1) Type: Function
(2) Purpose: Restores the saved standard output and

error to their previous states, sets a variable ResponseFile to the
name of the file holding the redirected output to end redirection.

(3) Description of Parameters: StdOut is the MS-DOS
standard output file handle that was redirected. StdOutput FileTemp
is the file that output was redirected to. SavedStdOut is the handle
that points to the original standard Output. StdErr is the MS-DOS
standard output file handle that was redirected. StdError FileTemp
is the file that output was redirected to. Saved Std Err is the handle
that points to the original standard Error.

(4) Subroutines Called:
Redirect.CloseFileHandle
Redirect. RedirectHandle

(5) Process Description

StdOut, the file handle for standard output is
reset to point to SavedStdOut, the temporary file StdOutputFile is
closed for writing. StdErr, the file handle for standard error is
reset to point to SavedStdErr, the temporary file StdErrorFile is
closed for writing, and the variable Respor-e_File is set to the name
of the temporary file if no errors are encountered, otherwise NIL.

m. RestoreCRT_Assignments
(1) Type: Procedure

(2) Purpose: To set the standard Input and Output
files to te:tdrivers in the CRT Unit. Faster inoput and output is
obtained.

(7 Description of Parameters: None. This procedure
reassigns the Pascal standard files Input and Output to CRT.AssignCRT
Input) and CRT.AssignCRT (Output).

(4) Subroutines Called:
System. AssignCRT
System. Reset
System. Rewrite

(5) Process Description
The assignments restore the input and output

standard files to the CRT unit.

1 10

APPENDIX L

MAINTENANCE MANUAL FOR UNIT SPAWN

A. UNIT SPAWN

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description

This unit detects commands that should be processed
internally by the Distrib program, and executes commands internally or
by spawning a child process. Command output and error responses are
returned to the caller either as strings suitable for conversion to
Xmodm buffers, or by reference to files containing the text. This unit
also contains the redirection switch as a public variable that dictates
whether program output will be redirected to a file or displayed
locally on the screen. This switch is normally set to redirect to
fil e.

2. Subroutines Contained

a. Match Command
(1) Type: Function
(2) PLurpose: To search a command string for a substring

that matches a command to be processed internally by the Slave program.
(3) Description of Parameters:

Input: Filespec is a command stripped of path
specification, or leading or trailing spaces.

Output: The function returns TRUE if a match was
focndj along with an enumerated type matching the command, FALSE
otherwise.

(4) Subroutines Called:
System. Length
System. Pos

(5) Process Description
A substring search is conducted using the enumerated

internal command type to index an array of strings containing the
command names. The internal command must be matched by exact
replication and must be positioned as the first substring in FileSpec.

b. ProcessIntrinsicCommand
(1) Type: Procedure

ill

(2) Purpose: This procedure executes an internal

command detected by MatchCommand. This procedure, and Run_local,
execute commands for Spawn.ParserMain.

(3) Description of Parameters:
Input: Command, the enumerated type specifying the

internal command. Commandtail are the parameters for the internal
command.

Output: Response and Error_ Ms are strings
containing either the command output and error messages, respectively,
or filenames containing the information. Restype and Errtype tell the
calling program what Response and ErrorMsg contain. Prompt is the
local machine current directory for return to the Master via the
calling program after the response is competed.

(4) Subroutines Called:
System.ChDir
System.GetDir
System. Mkdir
System. RmDir

(5) Process Description
The Command parameter is used in a CASE construct

select commands that are completed by Turbo Pascal functions and
procedures, and to pass other internal commands to Run-local to spawn a
copy of the MS-DOS command processor and run the command. This
approach is taken to greatly simplify the command parsing and
execution, since these requirements can be offloaded to the spawned
command processor for commands with complex processing requirements
such as DI. Batch mode is set to signal Run Local to spawn a copy of
the command processor rather than attempting to execute the command as
a program.

c. Run-Local
(1) Type: Procedure
(2) Purpose: This procedure executes all command that

nd detected by Match Command. This procedure, and
ProcessIntrisicCommand, execute commands for Spawn.ParserMain.

(3) Description of Parameters:
Input: Programname, the name of the command or

file to be executed; Commandline, the arguments for the command or
file; and Batch, which signals that a copy of the MS-DOS command
processor is to be used to run the program for batch files and certain
internal MS-DOS commands.

Output: Response and ErrorMsg are strings
containing either the command output and error messages, respectively,
or filenames containing the information. Restype and Errtype tell the
calling program what Response and ErrorMsg contain. Prompt is the
local machine current directory for return to the Master via the
calling program after the response is competed.

(4) Subroutines Called:
Redirection.Init Redirection Unit
Redirection. RedirectAll Output
Redirection. RestoreAllOutput

112

Redirection.RestoreCRT Assignments
Support. Find Environment
System. ChDir
System.GetDir
System. UpCase
System. Length

(5) Process Description
CRT.CheckBreak is set to allow an operator to

terminate execution of a runaway program. If the Batch flag is set,
the command is adjusted to execute a copy of COMMAND.COM and the
original command and arguments are moved to command tail.
Find Environment is used to locate the explicit path specification and
file name for COMMAND.COM, as required by the Exec procedure. The
current directory is saved to return the program to its working
directory after command execution. If the Redirection flag has been
set, calls are made to the Redirection Unit to route all subsequent
program output to files visible in the Redirection Unit. This
redirection is inherited by any programs spawned from this program by
Exec (Greco, 1987, p. 25). Exec is then called to spawn the
program(s). On return, the standard output handles are restored and
the original working directory restored as a precaution.

111

APPENDIX M

MAINTENANCE MANUAL FOR UNIT SUPPORT

A. UNIT SUPPORT

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description

The Support Unit contains most of the constant
declarations for the program, along with the initialization procedure
some general purpose procedures. From (Edwards, 1987, pp. 241 - 272).

2. Subroutines Contained

a. Initialize
(1) Type: Procedure
(2) Purpose: This procedure sets the default

parameters for the program, attempts to read the telephone number file
and creates a file if none exists, reads the user developed
configuration file to override some defaults, displays the terminal
screen and initializes the Wndow Unit.

(3) Description of Parameters:
Input:
Output:

(4) Subroutines Called:
System. UpCase
System. Length

(5) Process Description
This procedure first attempts to open a

configuration file under the name found in the constant structure
Defaults. If this file exists, the current configuration is read in to
a similar structure called Current, otherwise all parameters are taken
from the constant structure. This is used to set the screen colors,
identify the initial communications port to use, and identify the modem
port. This file may be updated from the Master screen. From the
configuration selected, the environmental parameters are established.
A similar process attempts to read the list of telephone numbers and
associated parameters, however the size of this array is not known in
advance. A memory block is drawn from the heap for each telephone
record read to make the list. If the file does not exist, a dummy
record is established. This file may also be updated from the screen.
Finally, the designated communications port is initialized. This is

114

essential if the Slave computer is to recognize external commands
without operator intervention.

b. Save-File
(1) Type: Procedure
(2) Purpose: To save user modified configuration or

telephone dialing list parameters in a local file for later use on
program initialization.

(3) Description of Parameters: D is a boolean switch
that selects the file to be saved.

(4) Subroutines Called:
Wndow.OpenWindow
CRT.ClrScr
Support. Yes
Support. NoFile
Support. OK
Wndow. Close Window

(5) Process Description
This procedure saves the default environmental

parameters as modified by the user in the file DISTRIB.CFG; or the
current list of telephone numbers and communications port parameters in
the file DISTRIB.PHN. Both files are loaded on program initialization
(if available) and override the default parameters found in the
constant data structures in the unit Support.

c. OK
(1) Type: Procedure
(2) Purpose: To obtain an acknowledgement from the

user.
(3) Description of Parameters:

Input: S, the string to title the prompt window.
Output: The user has responded if the call

returns.
(4) Subroutines Called:

Wndow. OpenWindow
Wndow. ProcessWindow
Wndow. Close Window

(5) Process Description
This function opens a window with a "Of," display

and the query in the window title field. The operator then depresses
the ENTER key to acknowledge, which is detected by Process-Window. The
widow is closed and the procedure call returns.

d. Yes
(1) Type: Function
(2) Purpose: To prompt the user for a yes or no

response.
(3) Description of Parameters:

Input: S, the string to title the prompt window.
Output: The function returns true if Yes was

seleCted.

115

(4) Subroutines Called:
Wndow.Open_Window
Wndow. Process Window
Wndow. CloseWindow

(5) Process Description
This function opens a window with menu bar,

displaying the query in the window title field and the selections "Yes"
or "NO" in the window. The operator selects with the menu bar, and
Process Window returns a value of two if the selection was "Yes." The
widow is closed and the function returns true if "Yes" was selected.

e. NoFile
(1) Type: Procedure
(2) Purpose: To obtain an acknowledgement from the

user after failing to find a file.
(3) Description of Parameters:

Input: S, the string to title the prompt window.
Output: The user has responded if the call

returns.
(4) Subroutines Called:

CRT.ClrScr
Support. OK
Wndow. OpenWindow
Wndow. ProcessWindow
Wndow. CloseWindow

(5) Process Description
This function opens a window to inform the

operator that the desired file could not be found, then opens another
window with a "OK" display. The operator then depresses the ENTER key
to acknowledge, which is detected by the OK procedure. The widow is
closed and the procedure call returns.

f. BuildStatus-Line
(1i) Type: Procedure
(2) Purpose: To construct a status line at the bottom

of the video display.
(3; Description of Parameters:

Input: Nothing.
Output: A status line containing information on

the current communications port is displayed at the bottom of the
screen.

(4) Subroutines Called:
System. Insert
Wndow.Write StatusLine

(5) Process Description
The procedure starts with a blank status line and

inserts substrings depending on the state of variables declared in this
unit to construct the status line. WriteStatus-Line displays the line
in the appropriate position.

116

g. Checkkeyboard
(1) Type: Function
(2) Purpose: To return a keyboard character,

including special characters.
(3) Description of Parameters:

Input: The key is taken from the Readkey
function. Output: The function returns the character
read, or the keyboard scan code in the high byte if a special character
is read (Readkey returned a zero). If no key is available, the
function returns zero.

(4) Subroutines Called:
System. KeyPressed
System. Readkey

(5) Proccss Description
The function checks the Keypressed function and if

true, calls Readkey to get the character. If Readkey returns zero, a
special key has been pressed, and the scan code is read from Readkey.
The character is returned, or the scan code in the high byte of the
integer if appplicable.

h. CheckAuxport
(1) Type: Function
(2) Purpose: This function checks for a character at

the currently selected communications port and returns a result.
(), Description of Parameters:

Input: Nothing.
Output: NUL if no character is ready, or the

character if one was read.
(4) Subroutines Called:

DataCom. RS232_Avail
DataCom. RS232 In

(5) Process Description
RES232_Avail returns true if a character is

available in the receive buffer of the currently selected
coMMLmnications port. If true, the character is read through RS232_ In,
and passed to the LST device and Ascii file if public variables are
set. The character is returned, or NUL if no character was available.

i. FindEnvironment
(1) Type: Function
(2Q) Purpose: To return a specified string from the

operating system environment. This function typically is called to
;in the COMSPEC=<path specification> string to locate a copy of the
MS-DOS command processor. With this path information, a second copy of
the command processor can be spawned to run programs from this one.

(3) Description of Parameters:
input: What is the parameter to be searched for.

The environment contains strings of the form What= text>.
Output: If found, the text> part of the

environment string; if not, a NUL string.

117

(4) Subroutines Called:
System.MemW
System.Ptr
System. Copy
System.Length

(5) Process Description
To run a batch file, a second copy of the MS-DOS

command processor is spawned as a child process, with the batch file as
a command tail. The secondary processor executes the batch file and
terminates. A copy of the command processor must first be located
without previous knowledge. MS-DOS normally places a string citing the
path to the COMMAND.COM on system initialization in an area of memory
called the environment, along with other information from the
AUTOEXEC.BAT file such as PATH information. A segment pointer to this
MS-DOS environment is placed in any program spawned from the original
command processorin the child Program Segment Prefix, at offset $002C.
The environment starts on a segment boundary, so the offsed is
automatically $0. This environment is the same one manipulated by the
SET command from MS-DOS, and normally contains a string of the form
COMSPEC=D:\directory\directory\command.com. To search the environment
for the requested string, a pointer (Environ) is typed for the maximum
size of the environment, 32K bytes and initialized from the segment
value at offset $002C. Each string in the environment is terminated by
a NUL character (ASCIIZ). The environment area itself is terminated by
an extra NUL. The environment area is searched, string by string by
copying the strings into a local variable string, S. Each of these
strings is examined for the search string What. If found, the
remainder of the string is returned, otherwise a NUL string. This
functio. is duplicated in Unit Support to prevent circular unit
dependencies. (Edwards, 1987, p. 250).

j. Update-Status
(1) Type: Procedure
(2) Purpose: To display or refresh the current status

of the calling program in a monitor window.
(3) Description of Parameters:

Input: Typically this procedure writes current
information contained in a data structure by writing formatted strings
to an open window, and then displaying the contents of the data as a
string, or by mapping an enumerated data type to an array of constant
strings to display the value.

Output: A window display of the :urrent status.
(4) Subroutines Called:

Wndow.Get Window
CRT.ClrEOL
CRT.GoToXY

(5) Process Description
This procedure is local to ModifyEntry. The

process depends on the caller to open a properly sized window and to
set a variable called Status ID to allow the status window to be
accessed via GetW'ndow. Once reopened, the procedure writes the

118

current status information.The procedure then resets the working window
to that of the caller's MonitorID.

k. ModifyEntry
(1) Type: Procedure
(2) Purpose: to display the current list of telephone

numbers that may be dialed automatically, or the current program
configuration parameters.

(3) Description of Parameters:
Input: I, a selector. If I > 0 the phone list is

to be modified, if I = 0 then the configuration parameters are
modified.

Output: The user is offered the opportunity to
save the modifications to a file.

(4) Subroutines Called:
UpdateStatus (local)
CRT.ClrScr
CRT. GoToXY
System. UpCase
System.Length
Wndow. OpenWindow
Wndow. ProcessWindow
Wndow. CloseWindow

(5) Process Description

Depending on I, the procedure opens a window of
the correct size, and then displays the current parameters by mapping
their values through arrays of constant strings to display readable
values. The procedure then enters a loop for operator entry of
parameters to be modified. The user then positions a menu bar over the
appropriate selection and presses ENTER. Depending on the selection,
the procedure prompts the operator for an input string, or displays
another parameterized window and calls Process-Window to obtain the
current selection. When ESC is pressed, the loop ends and the recorded
modifications may be safec to a configuration or phone list file by
Save-File. All windows are closed and the procedure returns.

119

APPENDIX N

MAINTENANCE MANUAL FOR UNIT WNDOW

A. UNIT WNDOW

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IBM PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description

This unit provides all window creation, memory
allocation, display, menu bar processing, closure and memory
deallocation functions for the program Distrib. The unit was changed
from an include file to a unit, but not otherwise changed from that
originally developed by the author in (Edwards, 1987, pp. 50-98). The
purpose descriptions are from the author.

2. Subroutines Contained

a. SetColor
(1) Type: Procedure
(2) Purpose: Set the EGA foreground color for text

display.
(3) Description of Parameters:

Input: Color, the code to set the color to.
Output: All future text will be displayed in the

color selected.
(4) Subroutines Called:

CRT.TextColor
(5) Process Description

The color selected is stored in the variable
Foreground, and a call is made to TextColor to set the screen
foreground color in accordance with the EGA monitor standards.

b. SetBackGround
(1) Type: Procedure
(2) Purpose: Set the EGA background color for text

display.
(3) Description of Parameters:

Input: Color, the code to set the color to.
Output: All future text will be displayed on a

background of the color selected.
(4) Subroutines Called:

CRT.TextBackGround

120

(5) Process Description
The color selected is stored in the variable

Background, and a call is made to TextBackGround to set the screen
background color in accordance with the EGA monitor standards.

c. 6etDummyScreen
(1) Type: Procedure
(2) Purpose: Force the Screen variable to point to a

dummy area on the heap.
(3) Description of Parameters:

Input: Screen, Screen-New (Public variables in
this unit.

Output: Screen and Screen-New
(4) Subroutines Called: None.
(5) Process Description

Screen is initialized to point to the the start of
the display area for the color or monochrome monitor in
InitWindow Info. This procedure saves this pointer in Screen-New and
then fills Screen with the same information.

d. 6etRealScreen
(1) Type: Procedure
(2) Purpose: To undo the work of GetDummyScreen
(3) Description of Parameters:

Input: Screen, Screen-New (Public variables in
this unit.

Output: Screen and Screen-New
(4) Subroutines Called: None.
(5) Process Description

Screen is initialized to point to the the start of
the display area for the color or monochrome monitor in
Init Window Info. Get Dummy Screen redirects the pointer Screen to a
dummy area on the heap. This procedure restores Screen to its original
setting.

e. Build-Borders
(1) Type: Procedure
(2) Purpose: Build a border of single or double lines

around a window.
(3) Description of Parameters:

Input: Lines, specifying a single or double
border. Active Window, a public pointer in this unit to a window
control block containing information about the size and current
position of the window to be bordered.

Output: The output is a border written to the
display to outline the window.

(4) Subroutines Called:
General.FillWord
System. Length

121

(5) Process Description
This procedure determines the window limits

contained in the window control block pointed to by Active Window, and
places standard symbols in screen memory to outline the window.

f. OpenWindow
(1) Type: Function
(2) Purpose: Open a window on the screen and draw a

border around it. (3)
Description of Parameters:

Input: XI, Y1, X2, Y2 are the window coordinates;
Flag is a bit mask of allowed functions for this window (borders, GOTO
allowed within the window, relocatable and can be closed from the main
program.- Name is the window title to be displayed.

Output: 0 - window opened successfully; 1 -
Invalid window coordinates; 2 - not enough memory (failure).

(4) Subroutines Called:
System. GetMem
System. MemAvail
System. Move
Wndow. BuildBorders

(5) Process Description
After checking the input parameters for valid

coordinates and sufficient memory, the memory required to save the
portion of the screen displayed by the window is allocated from the
heap and the window is drawn with the appropriate colors and borders.
Active-Window is advanced to this new window after adding it to the
linked list of open windows.

g. Close-Window
(I) Type: Function
(2) Purpose: To close the window pointed to by

Active-Window.
(7 Description of Parameters:

Input: Active-Window is a public pointer managed
by this unit, and refers to the currently open window.

Output: The window is closed, and Active-Window
is redirected to the previous window in the linked list of open
windows. The function returns FALSE if successful, TRUE if an attempt
was made to close a window with ActiveWindow'=NIL (no more windows
open).

(4) Subroutines Called:
System. FreeMem
System. Move
Wndow.BuildBorders
Wndow. SetBackground
Wndow. SetColor

(5' Process Description
After checking the input parameters for valid

coordinates and sufficient memory, the memory required to save the
portion of the screer displayed by the window is allocated from the

I1

heap and the window is drawn with the appropriate colors and borders.
Active-Window is advanced to this new window after adding it to the
linked list of open windows.

h. Save-Window
(1) Type: Function
(2) Purpose: This function saves the image of the

current window, closes it, and returns a pointer to the saved window in
memory.

(3) Description of Parameters:
Input: Active Window is a public pointer managed

by this unit, and refers to the currently open window.
Output: A pointer to the saved window.

(4) Subroutines Called:
Wndow. OpenWindow
Wndow.CloseWindow

(5) Process Description
W, a local variable is pointed to the same

windowbloc: as the current Active-Window. The procedure then opens a
i..indow with parameters identical to the current window by using the
local pointer W to dereference the current window parameters. The act
of opening a window of the same size and parameters has the effect of
saving the original window. Active Window now points to the new
window. If the call to OpenWindow fails, a NIL pointer is returned
from SaveWindow and the function exits. Otherwise, parameters from
the saved window are transferred to the Active-Window block, W is
redirected to the newly updated current window, Active Window is
retracted to the saved window and the window that overlaid it is
close I. The function returns the pointer to the saved block.

i. RestoreWindow
(1) Type: Procedure

2) Purpose:
(7) Description of Parameters:

input: A pointer to a saved window.
Output4 TRUE if the function was unable to

restore the window.
(4) Subroutines Called:

Wndow. OpenWindow
Wndow. SetBackGround
Wndow. SetColor

'5) Process Description
The function first uses the window pointer to set

the video display colors. Then, an attempt is made to open a window of
the same size as the saved window. If this fails, the function returns
trUe. Otherwise, the Active Window parameters are set to the saved
window, the saved window is added to the window control block chain,
ard Active-Window is reset to point to the restored window.

j. Get-Window
(1) Type: Function

1 2

(2) Purpose: To bring a window to the top of the
screen.

(3) Description of Parameters:
Input: Which, the ID of the window to be

surfaced.
Output: False if the operation succeeds, True if

the ID did not exist.
(4) Subroutines Called:

Wndow. GetDummyScreen
Wndow Restore Window

(5) Process Description
Get Window follows the backlinks from

Active Window back until the ID of Which is found or the links end at a
NIL. If found, Move_Window is used to copy the desired window into a
heap area obtained by Get_DummyScreen. The window is then placed on
the screen by RestoreWindow.

k. Move-Window
(1) Type: Function
(2) Purpose: To move a current window by a relative X

and Y.
(3) Description of Parameters:

Input: X, Y the direction and amount to move the
window.

Output: False if the operation succeeds, True if
the coordinates are invalid.

(4) Subroutines Called:
CRT.Window
Wndow. Exchange

(5) Process Description
Move Window checks the values of X and Y and then

coples the window incrementally in the desired direction(s). The built
ir procedure Window is then used to enable the new window location for
display.

I. Write-Status
(1) Type: Procedure
(2) Purpose: To display a string on the 25th video

display line with a video attribute.
(3) Description of Parameters:

Input: S, the status string; Attrib, the display
attribuie.

Output: The string is written to the display.
(4) Subroutines Called:

System. Length
(5) Process Description

The procedure first concatenates the attribute
byte with the display character and then writes the combination to the
sceen as a word, using the Screen pointer.

124

a. ProcessWindowMenu
(1) Type: Procedure
(2) Purpose: to display and process a menu in the

current window.
(3) Description of Parameters:

Input: Menu is a constant that must consist of an
integer, followed by an array of string constants of length Menu.

Output: The function returns a byte reflecting
the index of the i'th string in the constant array. A zero is returned
if ESC is pressed.

(4) Subroutines Called:
SetHighlights (local)

GoDown (local)
GoHome (local)
GoEnd (local)
GoUp (local)
CRT.GoToXY
CRT.TextBackground
CRT.TextColor
Support. Max
Support. Min
System. Length
Wndow. Build Borders

(5) Process Description
This function relies on a side effect of the data

structure, and assumes that the array of strings representing the
selections to be displayed in the window immediately follow Menu. By
obtaining a memory address for Menu, the function opens a window of the
proper size and then uses this implementation specific information to
display the strings. The function then offers the operator the menu
bFr movement options on the status line to make a selection.

125

APPENDIX 0

MAINTENANCE MANUAL FOR UNIT XMODM

A. UNIT XMOD1

1. Configuration Information
a. Language - Turbo Pascal Version 4.0
b. Compiler Version - 4.0
c. Target Hardware - IB1 PC/AT or close compatible
d. Operating System - Microsoft MS-DOS (Version 3.x)
e. Program Description

This unit handles all requests for Xmodem protocol
packet and file transmission and reception.

2. Subroutines Contained

a. StringtoBuf
(I) Type: Procedure
(2) Purpose: Convert a string of length 128 to an

Xmodem buffer of the same length.
(3) Description of Parameters:

Input: S, a 128 character string.
Output: buf, an Xmodem buffer. Short strings are

padded with NUL characters.
(4) Subroutines Called:

System. Length
(5) Process Description

The string is treated as an array of characters,
and each is read into the same position in the buffer.

b. Bufrto String
(1) Type: Function
(2) Purpose: Convert a 128 character buffer into a

string of the same length. Nonprinting characters are replaced with
spaces.

(3) Description of Parameters:
Input: buf, the 128 character buffer of

characters.
Output: s, a 128 character string.

(4) Subroutines Called: None.
(5) Process Description

The string is treated as an array of characters,

and each character in the buffer, another array of compatible type is
read into the string. Spaces are substituted for nonprinting
characters.

126

c. ReadAux
(1) Type: Function
(2) Purpose: Returns a character from the currently

selected communications port, and also writes the character to the
monitor file and monitor window if selected. Provides a timeout
fUnction and a keypressed abort.

(3) Description of Parameters:
Input: Seconds, the number of seconds to wait for

a character before returning with a timeout indication.
Output: A word with the received character in the

low order byte, value 256 (timeout) otherwise.
(4) Subroutines Called:

CRT.Delay
CRT.Keypressed
CRT.TextColor

CRT. BackGround
DataCom. RS232 Avail
System.DEC

(5) Process Description
A factor is multiplied by the number of seconds to

wait, and then used in a fast loop to test for a received character or
operator keypress. Either event breaks the loop. If a character is
available, the function returns the character. If MonitorID is
greater than zero, a monitor window is open and the character is
written to the cursor position there and to a monitor file. Otherwise,
a timeouit indicator is returned.

d. WriteAux
(1) Type: Procedure
(2) Purpose: Sends a character to the currently

selected communications port, and also writes the character to the
monitor ;ile and monitor window if selected.

(3) Description of Parameters:
Input: Ch, the character to be sent.
Output: The character is sent and displayed if

the MonitorID switch is greater than 0.
(4) Subroutines Called:

CRT. TextColor

CRT.BackGround
DataCom. RS232_Out

(5) Process Description
The character is sent out the communications port

by RS.232_Out. If MonitorID is greater than zero, a monitor window is
open and the character is written to the cursor position there and to a
monitor file.

e. Send-String
(1) Type: Procedure
(2) Purpose: To send a string out the currently

selected communications port.

127

(3) Description of Parameters:
Input: S, a string.
Output: The string is sent to the port.

(4) Subroutines Called:
DataCom.RS232_Out
System.Length

(5) Process Description
The string is passed, character by character, to

the communications port.

f. ReceiveRecord
(1) Type: Function
(2) Purpose: Receive an Xmodem packet from the

currently selected communications port. A building block for file and
command transfers.

(3) Description of Parameters:
Input: Buf, the data portion of the packet;

Blocksize, the size of the data buffer; seconds, the number of seconds
to wait before timing out on reception; and expectedblock, the ordinal
number of the next block expected from the sender.

Output: Buf is filled with the data packet

contents if successfully received; errors indicates the number of
errors encountered in receiving the packet.

(4) Subroutines Called:
Xmodm. ReadAux
Xmodm. WriteAux

(5) Process Description
ReceiveRecord first listens for the SOH character

signalling the start of an Xmodm packet from the port via ReadAux,
passing the nUmbert of seconds to wait on the call. The function exits
immediately with an appropriate status code if a CAN, EOT or unexpected
character is received. IF SOH is received, the function then assembles
the Xmodem header, calculates a running checksum on the incoming data,
and detects the checksum character. It then checks the packet for
match between the block number and its inverse (packet locations two
and three, respectively), an incorrect block number compared to the
input expectedblock, and a different checksum from that received and
provides the appropriate status on return for each. If the packet was
received correctly, an ACK is sent to the transmitter. If not, a NAK
is sent.

g. GetBuffer
(1) Type: Procedure
(2' Purpose: Reads a buffer of size blocksize from a

previously opened file. Pads the buffer with NUL characters if smaller
than requested.

(3) Description of Parameters:
Input: Buf, the buffer to fill; blocksize, the

size of the buffer in bytes; XferFile is a private file variable in
this unit.

128

Output: Buf contains the next file buffer.
(4) Subroutines Called:

System. BlockRead
(5) Process Description

The low level file read procedure BlockRead is
used to read an untyped buffer. The procedure reports the number of
bytes read. If less than the buffer size, the remaining bytes are
filled with NULL characters.

h. Send-Record
(1) Type: Function
(2) Purpose: Send an Xmodem packet out the currently

selected communications port. A building block for file and command
transfers.

(3) Description of Parameters:
Input: Buf, the data portion of the packet;

Blocksize, the size of the data buffer; seconds, the number of seconds
to wait before timing out on acknowledgement; Block, the ordinal number
of this packet; and errors, a count of the number of errors on the
attempt to return to the calling program.

Output: Buf is unchanged and is a VAR parameter
for efficiency; errors indicates the number of tries to send the
packet.

(4) Subroutines Called:
DataCom.Furgeline
Xmodm. ReadAux
Xmodm. WriteAux

(5) Process Description

SendRecord first calculates a checksum value for
the data in the buffer and then sends the SOH character signalling the
start of an Xmodm packet to the port via WriteAux, followed by the
block number and its inverse, the data and the calculated checksum
value. PurgeLine is called to clear the receive buffer to prevent an
erroneous interpretation of an earlier character received. ReadAux is
then called to listen for the receiver's acknowledgement. Status is
set accordingly. Finally, the keypressed function is checked to an
operator interrupt and status is updated. Status is returned as the
function result.

i. SyncReceive
(1) Type: Function
(2) Purpose: Used to synchronize to receive Xmodem

packets.
(3) Description of Parameters:

Input: Seconds, the number of seconds to wait
between sending sync characters (NAK for Xmodem); and synccharacter,
the sync character to send.

Output: A status code indicating synchronization,
timeout or operator keypress.

(4) Subroutines Called:
CRT.KeyPressed

1 2,

DataCom.PurgeLine
DataCom.RS232_Avail
Xmodm.WriteAux

(5) Process Description
Sync Recieve calculates the number of ten second

intervals in seconds is calculated. The receive line is cleared and
the sync character is sent. The function then loops waiting for a
character to be received or the operator to press a key for the time
indicated by seconds, sending a new sync character every five seconds.
The function does not check the received character, only whether or not
one was received in the allotted time. A status code is returned as
the function result (packet acknowledged, negative acknowledge,
receiver requests to cancel the transaction, timeout or operator
keypress).

j. SyncSend
(1) Type: Function
(2) Purpose: Used to synchronize to send Xmodem

packets.
(3) Description of Parameters:

Input: Seconds, the number of seconds to wait
between sending sync characters (NAK for Xmodem).

Output: A status code indicating synchronization,
timeout or operator keypress.

(4) Subroutines Called:
CRT.KeyPressed
DataCom. PurgeLine
Xmodm. ReadAu:N

(5) Process Description
Sync Send clears the receive line with PurgeLine

and then calls ReadAux to detect a received character. A status code
is returned as the function result (sync character received, checksum
sync received, receiver timed out or a keypress was detected).

k. SendEOT
(1) Type: Procedure
(2) Purpose: To signal the end of a data transfer for

the Xmodea, protocol.
(3) Description of Parameters:

Input: Status, to be changed to reflect the
outcome of the call; and Suppress EOT, a flag set to suppress the
normal EOT on an Xmodem data transfer. Used to concatenate file
transfers.

Output: Status, reflecting transmission
completed, or a timeout error (or too many errors).

(4) Subroutines Called:
Xmodm. ReadAux
Xmodm. WriteAux

(5) Process Description

Suppress EOT is first checked to see if the EDT
will be sent. If TRUE, the EDT is not sent and the procedure returns a

130

completion status. This allows successive Xmodem transfers without
encountering the normal flow control reversal. Otherwise., EOT
characters are sent every ten seconds until acknowledged or the
accumulated errors exceed RetryMax, a constant private to the Xmodm
Unit. A timeout status is returned if errors were exceeded, a
transmission complete status if EOT was properly acknowledged.

1. Send CAN
(1) Type: Procedure
(2) Purpose: Used to inform the other side of the

communications link that the Xmodem operation is to be aborted.
(3) Description of Parameters:

Input: None.
Output: Two CAN characters are sent out the

communications port.
(4) Subroutines Called:

Xmodm.WriteAux
(5) Process Description

Two CAN characters are sent out the communications
port.

m. UpdateStatus
(1) Type: Procedure
(2) Purpose: To display or refresh the current status

of the calling program in a monitor window.
(3) Description of Parameters:

Input: Typically this procedure writes current
information on the status of a data transfer, the number of bytes and
bloci:s sent or received, and the count of the number of errors
accumLlated on the transaction in a formatted display.

Output: A window display of the current status.
(4) Subroutines Called:

Wndow. Get Window
CRT.GoToXY

(5) Process Description
This process is used several places in this unit,

and operates identically in each. The process depends on the caller to
open a properly sized window and to set a variable called Status ID to
allow the status window to be accessed via GetWindow. Once reopened,
the procedure writes the current status information using variables
local to the caller. The procedure then resets the working window to
that of the caller's Monitor ID.

n. XmodemXfer
(1) Type: Function
(2) Purpose: Perform an Xmodem file transfer.
(3) Description of Parameters:

Input: Send, TRUE to send a file, FALSE to
receive; and Blocksize, the size of the data buffer to use.

Output: A status code indicating success or what
problem was encountered.

131

(4) Subroutines Called:
Update.Status (local to this function)
CRT.ClrScr
CRT.Delay

CRT.GoToXY
CRT.KeyPressed
CRT.ReadKey
DataCom.RS EightBits
General.Beep

System.BlockWrite
System.Assign
System. Reset
System.Rewrite
Xmodm. SyncSend
Xmodm.Get Buffer
Xmodm. SendRecord
Xmodm. Sync_Receive
Xmodm. WriteAux
Wndow.CloseWindow
Wndow.Open_Window

(5) Process Description
The public variable MonitorTransfers is checked

to see if a monitor window is to be opened to display the characters
transfered. If TRUE, the window and a monitor file are opened. The
status window is then opened and unchanging field names written.
RSEightBits is called to insure the communications port passes eight
bit data, regardless of its settings. After initializing the variables
used to report status, the function branches depending on whether a
file is to be sent or received. If Send is TRUE, SyncSend is called
to detect sync characters from the receiver. If SyncSend times out,
the transfer is aborted and the timeout is reported to the caller. IF
sync is detected, file buffers are obtained from GetBuffer and sent
via Send Record until EOF is detected or too many errors are
encountered. If successful, EOT is sent to the receiver to signal the
end of transmission. The KeyPressed function is monitored at several
points, and will cause an immediate abort with status returned to the
caller. If Send is FALSE, SyncReceive is called to send sync
aharacters. If a timeout is not encountered, Receive Record is called
repeatedly to obtain received buffers and monitor status. The transfer
terminates on receipt of EOT (competion), too many errors detected or a
keypress indication, with appropriate status returned to the caller.
UpdateStatus is called several times throughout each branch to
indicate progress or report errors. The transfer file is then closed,
as are the monitor and status windows. RSInitialize is called to
reset the communications port to its previous word length.

0. Command Xfer
(1) Type: Function
(2) Purpose: Transfer a single command packet.

132

(3) Description of Parameters:
Input: Send, TRUE to send a packet, FALSE to

receive a packet; Buf, the data buffer send or received; Blocksize, the
size of the data buffer.

Output: A status code indicating success or what
problem was encountered.

(4) Subroutines Called:
Update.Status (local to this function)
CRT.ClrScr
CRT.Delay
CRT.GoToXY
CRT.KeyPressed
CRT.ReadKey
General.Beep
Xmodm. SyncSend
Xmodm.GetBuffer
Xmodm. SendRecord
Xmodm. SyncReceive
Xmodm. WriteAux
Wndow. CloseWindow
Wndow. OpenWindow

(5) Process Description
This function operates similarly to XmodemXfer,

except that a single Xmodem packet is transferred. The public variable
MonitorTransfers is checked to see if a monitor window is to be opened
to display the characters transfered. If TRUE, the window and the
monitor file are opened. The status window is then opened and
unchanging field names written. RSEightBits is called to insure the
communications port passes eight bit data, regardless of its settings.
After initializing the variables used to report status, the function
branches depending on whether a file is to be sent or received. If
Send is TRUE, SyncSend is called to detect sync characters from the
receiver. If SyncSend times out, the transfer is aborted and the
timeout is reported to the caller. IF sync is detected buf is sent via
SendRecord. If successful, EOT is sent to the receiver to signal the
end of transmission. The KeyPressed function is monitored at several
points, and will cause an immediate abort with status returned to the
caller. If Send is FALSE, Sync_Receive is called to send sync
characters. If a timeout is not encountered, Receive_Record is called
to obtain received buffer and monitor status. The transfer terminates
on receipt of EOT (competion), too many errors detected or a keypress
indication, with appropriate status returned to the caller.
UpdateStatus is called several times throughout each branch to
indicate progress or report errors. The monitor file is then closed,
as are the monitor and status windows. RS Initialize is called to
reset the communications port to its previous word length.

p. Transfer-File
(1) Type: Procedure
(2) Purpose: To obtain the name of the file to be

tr:nsferred from the local operator.

13

(3) Description of Parameters:
Input: Send, TRUE if a file send is desired,

FALSE to receive a file.
Output: Monitor display.

(4) Subroutines Called:
Wndow.OpenWindow
Wndow.Close Window
Support. NoFile
System. Assign
System. Length
System.Reset
System. Rewrite
System.Upcase

(5) Process Description
TransferFile first opens a window to ask the

operator what filename is to be transferred. The transfer is aborted
and NoFile is called if the file is not found or cannot be opened.
Depending on Send, the file is opened for reading or writing and then
XmodemXfer is called to accomplish the transfer.

q. RespondbyFile
(1) Type: Procedure
(2) Purpose: To allow the remote Slave to send the

results of a program or other message contained in a file to the
Master.

(3) Description of Parameters:
Input: Response, the file to be sent.
Output: None from this procedure.

(4) Subroutines Called:
Wndow. OpenWindow
Wndow. Close Window
System. Assign
System. Length
System. Reset
System. Rewrite
System. Upcase

(5) Process Description
Transfer-File first opens a window to ask the

operator what filename is to be transferred. The transfer is aborted
if the file is not found or cannot be opened. Depending on Send, the
file is opened for reading or writing and then Xmodem Xfer is called to
accomplish the transfer.

r. GetResponse
(1) Type: Function
(2; Purpose: To allow the Master to receive file

responses from a program completed by the Slave.
(7) Description of Parameters:

Input: BlockSize, the size of thi Xmodem buffers.
Output: Status code of the call.

134

(4) Subroutines Called:
CRT.KeyPressed
CRT.ReadKey
DataCom.RSEight Bits
DataCom. RSRestore
Xmodm.SyncReceive
Xmodm. ReceiveRecord
Xmodm. WriteAux
System.Assign
System. Close
System. Rewrite
Wndow. TextColor
Wndow. TextBackGround

(5) Process Description
For this function, the monitor window is set to

the current window, and the monitor tile is directed to NUL, the bit
bucket. This satisfies ReadAux and WriteAux so that the display will
operate properly without creating an unnecessary file. RSEightBits
is called to insure the communications port passes eight bit data,
regardless of its settings. After initializing the variables used to
report status, SyncReceive is called to send sync characters. If a
timeout is not encountered, ReceiveRecord is called to obtain received
buffer and monitor status. The transfer terminates on receipt of EOT
(competion), too many errors detected or a keypress indication, with
appropriate status returned to the caller. UpdateStatus is called
several times throughout each branch to indicate progress or report
errors. RS_Initialize is called to reset the communications port to
its previous word length, and the dummy monitor file is closed.

s. Xmodm Unit Initialization
(1) Type: Unit Initialization Procedure
(2) Purpose: To initialize the unit on loading.
3.) Description of Parameters:

Input: Suppress_EOT, MonitorTransfers.
Output: SuppressEOT, Monitor-Transfers.

(4) Subroutines Called: None.
(5) Process Description

Suppress EOT and Monitor Transfers are set to
their default values.

135

APPENDIX P

SOURCE LISTIN6 FOR UNIT DATACOM

DATACOM.PAS
(**** This is the unit that accomplishes all interface to the ****)
(**** communications ports for character, string and buffer ****)
(**** transfer. It also initializes the communications ports ****)
(**** and provides interrupt interrupt service routines for ****)
(**** character receive.

(**** References:
(**** Interface: Edwards, C.G., Advanced Techniques in

Turbo Pascal, pp. 220 - 23A, Sybex,
Inc., 1987.

(**** Multiple
(**** Ports: Kimura, N., <abcscnuk@csuna.uucp>,*

info-pascal-@vim.brl.mil message,
Subject: Re: TP4.0 Aux Problem,
Message-ID: <1376@csuna.uucp>,
17 Nov 86 10:20:54 GMT.

(**** Low Level
(**** Procedures: de Boer, R., <reino~euraivl.uucp>,

info-pascal-@vim.brl.mil message,

Subject: Serial Unit in TP4,
Message-ID: <797@eraivl.uucp:>,
15 Nov 88 14:17:15 GMT.

(**** UART/PIC
(**** Declarations: Greenberg, R.M., "TSRCOMM, a Replacement ****)

for Interrupt 14", source listing,
Ross M. Greenberg, 1987.

(**** Developed by Nelson Ard.

(**** Last modification Sep 89.

(* Modification history

8 Sep 89 - added RSEight_Bits to change the port data work
width to eight bits for Xmodem protocol operation.

176

UNIT DATACOM;

INTERFACE

USES General, CRT, Dos;

CONST
COM1 = 1;

COM2 = 2 4

COM7 = 3; (not implemented, but MS-DOS knows about them}l
COM4 = 4; (not implemented, but MS-DOS knows about them}

************************* Start Edwards Excerpt *********************
TYPE

RSBaud = (BIIO,BI50,B300,B600,B1200, B2400,B4800,B9600,B19200,
B38400);

RS Parity = (None,Odd,Nevermind,Even);

RS-Config = Record
Stop,
Length : byte;
Alias : string[10 ;
Speed : RSBaud;
Parity : RSParity;

IRQNo : byte;
installed : boolean;

end; { RECORD I

PortRange = COMI..COM2:

Currentrom :Byte; (public, specifies current port for
command or file transfer}

ComPort ARRAY I PortRange I OF RSConfig;

Procedu-e RS Break;
{ This procedure instructs the currently selected data communications
po-t to send a break signal'

Function RS272 _Avail:Boolean;
{This function returns TRUE if there are characters to be read from
the RS232 port. It is analogous to the Turbo function KEYPRESSED for
the keyboard.

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Paszal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

****.************** Continue Edwards Excerpt *******************

137

(******************** Continue Edwards Excerpt ********************)

Function RS232 In:Char;
The AUX device is set to point to this function for input. It returns

the next character received from the RS232 port.

Procedure RS232 Out (Param : Char);

t Sends the character to the RS232 port. }

Procedure RS Initialize(Com:Byte;Speed:RSBaud;Parity:RSParity;
Stop,Length:Byte);

C Initialize communications port. Vector the appropriate interrupt to
point to our interrupt service routine. Initialize hardware
handshaking lines. Store current settings in a data structure for
restoration.

Input: COM - The R8232 port to be handled
Speed - The baud rate of the line
P - The parity of the line

Stop - The number of stop bits
Length - The number of data bits

ProcedUre RSCleanup;

{This procedure should be called on exit to disable interrupts on the
RS232 port and reset everything to its default state.

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

************************ End Edwards Excerpt ***********************)

Procedure PurgeLine;
{ This function clears the receive buffer and UART receive buffer for
the currently selected port).

Function Connected : boolean;
Returns TRUE if the Data Set Ready line is true, signalling hardware
handshaking I

unction RS232_peek : Char;

C Added to allow nondestructive read of the currently selected port
input buffer for xmodm.Sync receive

138

Procedure SendString (S : String);

. Send a string out the currently selected RS232 port }

Procedure RSRestore (COM byte);

{ Reinitialize the COM Port }

Procedure RSEightBits;

{ Adjust the comport for eight bits regardless of current setting)

IMPLEMENTATION

(************************ Start Greenberg extract *********************)
CONST
t UART declarations 3
t Interrupt Enable Register I
{ Or one or more of these bits to enable the respective interrupts 3

IERRDA = $01; f Receive Data Available Int Bit ------- I)
IER THRE = $02; { Transmitter Hold Register Empty Bit ------ 1 1
IERRLS = $04; 1 Receive Line Status Int Bit I--)
IER_MS = $08; (Modem Status Int Bit - 1---

C Interrupt Identification Register)
t Check the lower four bits to see what interrupt called I

IIRRLS = $05; 1 Receiver Line Status Interrupt- ---- -101)
IIR RDA = $04; C Receive Data Available ----- -100 1
IIR_THRE = $02; I Transmitter Hold Register is Empty ---- -010 1
IIR PEND = $01; 1 zero if * any * interrupt pending----- -001 3
fIR_MS = $00; t Modem Status interrupt ---- 000 1

C Line Control Register
{ Or one or more of these bits to select comm port parameters 3

LCRCHR5 = $00; C Five bit character 00 1
LCRCHR6 = $01; - Six bit character 01 1
LCRCHR7 = $02; 1 Seven bit character ---- 10 1
LCRCHR8 = $0': 1 Eight bit character ---- 11 3
LCRSTOPi = $00; C One stop bit ---- -- _

LCRSTOP2 = $04; I Two stop bits -I--

LCR NOPARITY = $00; .{ No parity 0--- 3
LCRPARITYEN = $08; { Enable parity (see SPARITY and

EPARITY ---- 1 ---
LCREPARITY = $10; 1 Even parity bit ---I ---- I
LCRSPARITY = $20; C Stick parity --I -..

LCR BREAK = $40; C Transmits a BREAK (space) -I -------
LCR DLAB = $80; { Divisor Latch Access bit I--- --- }

(* Reprinted from "TSRCOMM.ASM A Replacement for Interrupt 14" by Ross
M. Greenberg, by permission of the author. Copyright 1987, Ross M.
Greenberg. All rights reserved.

4***************** Continue Greenberg Excerpt ********************)

140

(********************* Continue Greenberg extract *********************)

{ Modem Control Register }
f Or one or more of these bits to signal the modem }

MCR_DTR = $01; { set Data Terminal Ready 1
MCRRTS = $02; { set Request To Sent 1 }
MCR_OUT1 = $04; { Output I (resets Hayes modem) ---- I---
MCROUT2 = $08; { Output 2 (allows comm

port interrupts) I }
MCR_LOOP = $10; { Loopback test ---1 }

t Line Status Register }
{ Test one or more of these bits to determine comm port status }

LSRDATA = $01; { data is available 1 }
LSR_OVERRUN = $02; { overrun error bit - }
LSR_PARITY = $04; t parity error bit I-- }
LSF_FRAMING = $06; (framing error bit 1 }
LSR_BREAK = $10; t BREAK detected bit --- }
LSRTHRE = $20; t Transmit Holding Register Empty --1- ----
LSRTSRETY = $40; C Transmit Shift Register Empty -1 ------

C Modem Status Register 3
I Test one or more of these bits to determine modem actions }

MSR_DELCTS = $01; t delta Clear To Send --- 1
MSRDELDSR = $02; t delta Data Set Ready 1- I
MSR_EDGERI = $04; { Trailing Edge of Ring Indicator ------ -I
MSDELSIGE = $08; ? delta Receive Line Signal Det 1 -
MSRCTS = $10; t Clear To Send ---1 ----

MSR DSR = $20; t Data Set Ready --1- -----
MSPRI = $40; ? Ring Indicator - entire ring -1 -------
MSRDCD = $80; t Data Carrier Detect - on line 1 --------

(* Reprinted from "TSRCOMM.ASM A Replacement for Interrupt 14" by Ross
M. Greenberg, by permission of the author. Copyright 1987, Ross M.
Greenberg. All rights reserved.

************************ End Greenberg Excerpt **********************

141

(******************* Start Edwards Excerpt *************************)

(IRQ Lines I

IR~line : ARRAY I PortRange 3 OF byte = (4, 3);

TYPE

INSB250 = record
THR : word; (Transmit Holding Register)
RBR : word; (Receive Holding Register I
IER ; word; (Interrupt Enable Register)
IIR : word; (Interrupt Ident Register 1
LCR : word; (Line Control Register I
MCR : word; (Modem Contro Register }
LSR : word; (Line Status Register }
MSR : word; C Modem Status Register I

DLL : word; { Divisor Latch LSB I
DLM : word; (Divisor Latch MSB I

END;

CONST

RS_BufferSize = 4095; (Size of Buffer - 1.. .Change this if you
want a different buffer sizel

I 8259 PIC declarations I
ISR = $20; { Interrupt Service Register I
IMR = $21; Interrupt Mask Register I
TR04 Masi = $EF; { Enable for COMI I
IR7_1Mask = $F7; { Enable for COM2 I

IBM PC comm port interrupt vectors .
Cn111 INTR = $0r;
1C 7 NTR = I OB;

RS -Error : byte = 0;
Chk_DS : boolean = FALSE;
Chk_C7S : boolean = FALSE;

Regs : Array [..23 of INS8250 =

((THR:$3F8; RBR:$3F8; IER:$3F9; IIR:$3F9; LCR:$3FB;
MCR:$3FC; LSR:$3FD; MSR:$3FE; DLL:$3F8; DLM:$3F9),
(THR:$2F8; RBR:$2F8; IER:$2F9; IIR:$2F9; LCR:$2FB;
MCR:$2FC; LSR:$2FD; MSR:$2FE; DLL:$2FS; DLM:$2F9));

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.
Modifaed after "Re:: TP4.0 Aux Problem" by Naoto Kimura, reprinted
by permissior of the author.

**************** Continue Edwards Excerpt *******************)

142

(******************** Continue Edwards Excerpt ********************)

Var RSBuffer : Array [1..2,0..RSBuffer Size of Byte;
RSBuf _Head,
RSBufTail : Array [1..2] OF word;
index byte;

Line settings : byte;

Procedure DisableInterrupts;

f Insert assembly code to disable computer interrupts)

INLINE (SFA);

Procedure EnableInterrupts;

C Insert assembly code to enable computer interrupts 3

INLINE ($FB);

Function RS232 Avail:Boolean;

(This function returns TRUE if there are characters to be read from

the RS232 port. It is analogous to the Turbo function KEYPRESSED for

the keyboard.

Begin

Rs232_Avail

RSBu4_Head I CurrentCOM 3 <* RS Buf Tail I CurrentCOM];

End; (or RS232Avail

Procedure RS2 32_ISR1

(Flags, CS, IP, AX, BX, CX, DX, SI, DI, DS, ES, BP : word);

INTERRUPT;

C This procedure handles interrupts -rom RS232 port one
THIS PROCEDURE MUST NOT BE CALLED BY ANY OTHER PROCESS]

Begin

DisableInterrupts;
RS Error:=Port[Regs[COMI].LSR I and SE;
RS Buffer[COMI, RSBurTail C COMI]] := Port[Regs[COM1].RBR);

RS BurTail[COMI I := (RSBufTail[COMI]i)

mod (RS Buffer Size+l);
EnableInterrupts;
Port[$20 1 := $20; (Report end of service to PIC,

End; Cof RS232_ISRI 1

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
Modified afte- "Re:: TP4.0 Aux Problem" by Naoto Kfimura, reprinted
ty perm:ssion of the au(tho-.

********************* Continue Edwards Excerpt *****************

14

(******************** Continue Edwards Excerpt *********************

Procedure RS232 ISR2
(Flags, CS, IP, AX, BX, CX, DX, SI, DI, DS, ES, BP : word);
INTERRUPT;

(This procedure handles interrupts from RS232 port two
THIS PROCEDURE MUST NOT BE CALLED BY ANY OTHER PROCESS

Begin
Disablelnterrupts;
RSError:=Port[Regs[COM2].LSR I and $1E;
RSBuffer[COM2, RSBuf Tail C COM2 23 := Port[Regs[COM2].RBRJ;
RS Buf Tail[COM2 I := (RSBufTail[COM2]+1)

mod (RS Buffer_Size+l);
Enablelnterrupts;
Port[$20] := $20, {Report end of service to PIC}

End; Cof RS232_ISR2)

P-ocedure RSE_Break;
C This procedure instructs the currently selected data communications
port to send a break signal)

Beg.in
PortrRegs[CurrentComJ.LCR:

PortERegs[CurrentCom].LCR] or LCRBREAK;

Delay(200); [1/5 second,
Port[Regs'CurrentCom3.LCR]
PortrRegs[CurrentComJ.LCR] xor LCRBREAK;

End; .of RS_BreakL

cunction RS2"_2In: Char;
[The AUX device is set to point to this function for input. It returns
the next character received from the RS232 port.

Begin
While RS_B uf _Head I CurrentCOM I = RSBufTail C CurrentCOM I Do

Delay(10);
RS232_In :=

Char (RSBuffer [CurrentCOM, RSBufHead C Current§COM 32);
RS Buf Head I CurrentCOM 2 :=

(RS Buf Head I CurrentCOM 2+1) mod (RSBufferSize+1);

End; Lof RS232 In'

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.
Modified after "Re:: TP4.0 AUX Problem" by Naoto Kimura, reprinted
by permission of the author.

********************* Continue Edwards Excerpt ********************)

144

(******************** Continue Edwards Excerpt ********************)

Procedure RS232 Out (Param : Char);

{ Sends the character to the RS232 port. }

Begin
While ((Port [Regs C CurrentCom J.LSR] and $20) <> $20)
(Transmit Reg empty}

do Delay(1);
(* Request to send *)
Port C Regs I Current COM].MCR I := MCRRTS OR MCR OUT2;
IF Chk DSR THEN
While ((Port[Regs [Current COM].MSR] and MSRDSR) <> MSR DSR)

do Delay(1); tWait a while)
IF Chk CTS THEN
While ((Port[Regs [CurrentCOM].MSR] and MSRCTS) <> MSR CTS)

do Delay(i); (Wait a while
Port[Regs[Current COM J.THR] := Byte (Param);
RSError:=O;

End;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.
Modified after "Re:: TP4.0 Aux Problem" by Naoto Kimura, reprinted
by permission of the author.

************************ End Edwards Excerpt **********************)

************************** Start de Boer extract ********************)
PROCEDURE Enable (IRD : byte);

Set the Interrupt Mask Register on the Programmable Interrupt
Controller to recognize interrupts from this port I

BEG I N
Fort [IMR] := Port [IMR] AND NOT (1 SHL IRQ);

END; { Enable }

PROCEDURE Disable (IRO : byte);

{ Reset the Interrupt Mask Register on the Programmable Interrupt
Controller to ignore interrupts from this port I

BEGIN
Port [IMR] := Port LIMR] OR (1 SHL IRD);

END; { Disable }

(* Reprinted from "Serial Unit in TP4" by Reino de Boer, by permission

of the author. Copyright 1987 Reino de Boer. All rights reserved.
************************ Continue Boer Excerpt **********************

145c

************************ Continue de Boer extract *******************)

PROCEDURE Establish (COM : byte);

{ Raise all hardware handshaking lines to prepare for
communications I

BEGIN
WITH Regs [COM] DO

Port [MCR I := MCRDTR OR MCRRTS OR MCROUT2;
END;

PROCEDURE SendEOl (IRQ : Byte);

{ Send an End Of Interrupt command to the Programmable Interrupt
Controller to let it know we are done servicing this interrupt }

BEGIN
Port [ISR] :60 OR IRQ;

END;

Procedure ResetChip (Com : Byte);

{ Disable UART generated interrupts, drop the hardware handshaking
lines. Shut down the currently selected communications port 1

Var Dummy : byte:

Begin
WITH Regs r Comt 1, Comport r Com I DO BEGIN

WHILE (Port I LSR I AND LSR DATA) 0 ') DO
Dummy: Port [RBR 2;

Disablelnterrupts:
{ Allow none oz the interrupt types }
Port E IER] := 0:
{ Tell rr - , not ready
Port I MCR] := Port C MCR I AND
NOT (MICROUT2 OR MCRDTR OR MCR RTS);
Disable all interrupts for this port I

Disable (IRQNo);
Enablelnterrupts:

END;
END;

:ONST { Pit rate divisor table J
Divisor : ARRAY [RSBaud) OF-word =

1047, 768, 784, 192, 96, 48, 24, 12, 6, 7

(* Reprinted from "Serial Unit in TP4" by Reino de Boer, by permission
of the autho. Copyright 1987 Reino de Boer. All rights reserved.

*********************** Continue Boer Excerpt *********************)

146

S*********************** Continue de Boer extract ********************)

1 Select bit rate by programming the PBRG I
PROCEDURE SelectBitRate(COM : byte; Speed : RSBaud);

CONST PBRG Settle : word = 250;

VAR BaudDiv : word;

BEGIN
{ Update port data
ComPort [Com].Speed := Speed;
BaudDiv = Divisor I Speed];
t Set Divisor Latch Access Bit }
port[Regs C Com].LCR I :=

port[Regs I COM].LCR I OR LCR DLAB;
{ Bit rate divisor to PBRG }
portwE Regs C COM].RBR I := BaudDiv;
C Give port some time to settle I
delay(FBR_Settle);
{ Reset function of RBR }
port: Regs C COM].LCR I
port[Regs E COM].LCR 3 XOR LCRDLAB;

END; { SeiectBitRate }

-{ Set word length in Line Control Register I
PROCEDURE SelectWordLength(COM : Byte; Length byte);

VAR LineControl : byte;

BEGIN
Spdate port data I

ComPort C Com].Length := Length;
LineControl := port[Regs I Com].LCR];
LineControl := (LineControl AND (NOT LCR CHRB

OR (Length - 5);
{ Set relevant bits 3

port[Regs C COM J.LCR] LineControl;
END; { SelectWordLength I

(4 Reprinted from "Serial Unit in TP4" by Reino de Boer, by permission
of the author. Copyright 1987 Reino de Boer. All rights reserved.

•*********************** Continue Boer Excerpt **********************

147

*********************** Continue de Boer extract ********************)

{ Set stopbits in Line Control Register)
PROCEDURE SelectFraming(COM : Byte; Stop : byte);

VAR LineControl : byte;

BEGIN
{ Update port data)
ComPort I Com].Stop := Stop;
LineControl := port[Regs I Com].LCR 3;
LineControl : (LineControl AND (NOT LCRStop2
OR ((Stop -1)4);

{ Set relevant bits I
port[Regs I COM J.LCR] := LineControl;

END; { SelectFraming)

{ Set parity in Line Control Register }

PROCEDURE SelectParity(COM : byte; Parity RSParity);

VAR LineControl : byte;

BEGIN
ComPort[Com].Parity := Parity;
{ Update port data I
LineCortrol port[Regs E Com].LCR];
LineControl (LineControl AND (NOT $40

OR ORD(Parity)*8;

{ Set relevant bits }
porte Regs I COM .LCRJ := LineControl

END: { SelectParity }

CONST RTS Settle : byte = 2;
DTR Settle : byte = 2;
PBRG Settle : word = 250;

(* Reprinted from "Serial Unit in TP4" by Reino de Boer, by permission
of the author. Copyright 1987 Reino de Boer. All rights reserved.

************************** End de Boer Excerpt *********************)

148

Procedure PurgeLine;
t This function clears the receive buffer and UART receive buffer for

the currently selected port}.

VAR
Dummy : Byte;

BEGIN
RSBuf Head [Current COM 1 0;
RSBuf Tail I CurrentCOM 1 0;
Dummy := Port[RegstCurrentCOM].RBR];

End; (of PurgeLine.

FUNCTION Connected : boolean;
{ Returns TRUE if the Data Set Ready line is true, signalling hardware
handshaking I

BEGIN
Connected := Port[Regs[CurrentCom.MSR] and $80 = $60;

END;

Function RS232peek : Char;

{ Added to allow nondestructive read of the currently selected port
input buffer for xmodm.Syncreceive

Begin
While RSBuf Head C Current COM 2 =

RSBufTail E CurrentCOM I do Delay(10);
RS232_peek := Char(RS Buffer[CurrentCOM,

RSBufHead [CurrentCOM] J);
End .of RS2 2 Peek,

Procedure RSEightBits;

Adjust the comport for eight bits regardless of current setting

BEG IN
Port I Regs I CurrentCom 2.LCR I := LCR NOPARITY OR LCRSTOP1

OR LCRCHR8;
END;

Procedure RSRestore (COM byte

{ Reinitialize the COM Port

BEGIN
WITH Comport I COM I DO
RSInitialize(Com, Speed, Parity, Stop, Length);

ENE;

149

Procedure SendString (S : String);

{ Send a string out the currently selected RS232 port 1

BEGIN
IF Length (S) > 0 THEN

FOR index := 1 to Length (S) DO
RS232_Out (S I index I);

END;

(********************** Start Edwards Excerpt ************************
Procedure RS2Z2 Init (COM, Params : word);

(Call BIOS interrupt $14 with a formatted word to initialize the

currently selected communications port }

VAR Regs : DOS.Registers;

BEGIN
Regs.DX : Com-i;
Regs.AX : Params;
Intr ($14,Regs).;

END;

'r-ocedure RSInitialize(Com:Byte;Speed:RSBaud;Parity:RSParity;

Stop,Length:Byte);

C Initialize communications port. Vector the appropriate interrupt to
point to our interrupt service routine. Initialize hardware
handshaking lines. Store current settings in a data structure for
restoration.

Input: COM - The RS232 port to be handled
Speed - The baud rate of the line
P - The parity of the line
Stop - The number of stop bits
Length - The number of data bits

Var Params : word;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.
Modified after "Re:: TP4.0 Aux Problem" by Naoto Kimura, reprinted
by permission of the author.

********************* Continue Edwards Excerpt ********************)

150

********************* Continue Edwards Excerpt ********************)
Begin

WITH Regs [COM I DO BEGIN
Current Com:=Com; (save comm port in local variable)
Params := Ord(Speed)*32 + Ord(Parity)*8 + (Stop-I)*4 + Length-5;
{ Calling the BIOS service to initialize the port
* clears * all UART interrupts }

RS232_Init (COM, Params);
Delay (PBRG Settle); { delay to allow UART to settle)
Port C LCR I :=
Port C LCR I AND (NOT LCRDLAB);
Set our interrupt handler }

CASE Com OF

1 : SetlntVec (COM1INTR, Addr(RS232_ISR1));
2 : SetlntVec (COM2-INTR, Addr(RS232_ISR2));

END;
ResetChip (Com);
Disablelnterrupts;
Establish (COM);
Enable f Comport [Current Com].IRQNo);

Interrupt on receive only }
Port C Regs r COM J.IER I := IERRDA;

Clear the port buffer }
REBLIf _Head [Com :=O:
RSBuf Tail C Com :=0
Reset any stray interrupts :n the PIC }

SendEOI (Comport [CurrentCom].iRQNo);
Erablelnterrupts;

Comport E Current Com].Speed Speed;
Comport : CurrentCom J.Parity : Parity;
Comport I Current Com].Stop Stop;
Comport C Current Com].Length Length;
Comport C CurrentCom].Installed := TRUE;

END;
End; %of Initia i-e"

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.
Modified after "Re:: TP4.0 Aux Problem" by Naoto Kimura, reprinted
by permission of the author.
Modified after "Serial Unit in TP4" by Reino de Boer, reprinted by
permission of the author. Copyright 1987 Reino de Boer. All
rights reserved.

********************* Continue Edwards Excerpt *********************

15'

(******************** Continue Edwards Excerpt ********************
CONST
ExitPtr : pointer NIL;
OldIntVecl : pointer = NIL;
OldIntVec2 : pointer = NIL;
Old IMR : byte = 0;
Old_ IERi : byte = 0;
OldIER2 : byte = 0;

Procedure RSCleanup;

This procedure should be called on exit to disable interrupts on the
RS232 port and reset everything to its default state.

}

Begin
Comport [Current Com].Installed := FALSE;
ResetChip (Current Com);

End; {of Cleanup'

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.
Modified after "Re:: TF'4.0 Aux Problem" by Naoto Kimura, reprinted
by permission of the author.
Modified aFter "Serial Unit in TP4" by Reino de Boer, reprinted by
permission of the author. Copyright 1987 Reino de Boer. All
rights reserved.

********************** Continue Edwards Excerpt ********************)

152

********************* Continue Edwards Excerpt *********************
(* This is the error handler for Datacomm *)

****************************** Start Swan Excerpt *******************)

CONST
HexDigit ARRAY [0..153 OF Char = "0123456789ABCDEF';

TYPE
string2= string[2];
string4 = string[4);

PtrRec = RECORD
Ofs, Seg : word;

END;

FUNCTION HexByte (B : Byte) : string2;
BEGIN
HexByte := HexDigit [B SHR 43 + HexDigit[B AND SFJ;

END;

FUNCTION He;: (I : Word) : string4;

BEGIN
Hex = HexfByte(Hi(I)) + HexByte(Lo(I));

END:
(* Reprinted from Mastering Turbo Pascal Files By Tom Swan, by

permission of Howard W. Sams and Company. Copyright 1987 Howard W.
Sams and Company. All rights reserved.

***************************** End Swan Excerpt **********************

SPROCEDURE Datacomm Error; {$F-}

{ This is the E:.it Prozedure for * this * unit }

V4, inde:-: : byte;

BEGIN
'F (E it.ode 0) OR (ErrorAddr N!L) THEN

BEGIN
Assign (OUtpLt,
Rewrite(OutPut);

IF ExitCode = $FF THEN
Writeln('USER BREAK')

ELSE

* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.
Modified after "Re:: TF'4.(, Au;: Froblem" by Naotc Limura. reprinted
bv Dermissior of the aLthcr.

********************* Cor, tinUe Edwards r'.cerpt ********************)

(******************** Continue Edwards Excerpt ********************)
BEGIN

Writeln ('Critical Error # ', HEX(ExitCode));
Write('AT PROGRAM LOCATION');
Writeln(HEX(seg(ErrorAddr')),':', Hex(ofs(ErrorAddr^)));

END;
END;
Disablelnterrupts;
? Restore the previous interrupt vectors)
SetlntVec (COM1 INTR, OldIntVecl);
SetlntVec (COM2 INTR, OldIntVec2);
EnabI eInterrupts;
t Shut down the ports }
FOR index := COM1 TO COM2 DO BEGIN

Port[Regs E index].LCR]:=Port[Regs E index].LCR] and $7F;
PortE Regs E index].IER]:=O;
Port[Regs E index].MCRJ:=O;

END;
t Restore the PIC interrupt mask 3
Port E IMR 3 := Old_IMR;
E',itProc := ExitPtr;

END; C Datacomm_Error 3

BEGIN { Unt Initialization I
CheckBreak r= TRUE;
I Save the existing exit procedure for this unit }
ExitPtr := ExitProc;
t Save the existing interrupt mask for the PIC I
Old IMP := Port I IMR 3;
{ Save the current serial port interrupt vectors 3.
GetlntVec (COMIINTR, OldIntVecl);
GetintVec (COM2_INTR, OldIntVec2);
(Clear the receive buffers .
REBLf Head E COMI] : ';
RS Buf Head E COMI] := 0;
FS BulTail I COM2 3 := 0;
RSBufTail C COM2 2 0;
. link in our unit exit procedure to undo all of the above on
program termination 3

ExitProc := Addr(Datacommerror);
{ Set up both ports to initial values .

(* Reprinted with extensive modifications from Advanced Techniques in
Turbc Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.
Modified after "Re:: TP4.0 Aux Problem" by Naoto Kimura, reprinted
by permissio7, of the author.

*****2************** Continue Edwards Excerpt ********************)

154

(******************** Continue Edwards Excerpt ********************
FOR index := COMI TO COM2 DO

WITH Comportindex] DO BEGIN
Stop 1;
Length 8;
Alias : '';
Speed B4800;
Parity None;
IRQNo := IRQLine I index];
Installed := FALSE;

end; { COMPORT initializaton }
END.

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex:, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

Modifications reprinted from "Serial Unit in TP4" by Reino de Boer,
by permission o the author. Copyright 1987 Reino de Boer. All

rights reserved.

(*********************** End Edwards Excerpt **********************4)

155

APPENDIX A

SOURCE LISTING FOR UNIT DIRECTOR

I

DIRECTOR.PAS
(*************** Turbo Pascal 4.0 unit to read a directory *********)

(*************** and display it
(*************** Date: 28 July 1989, 10:06:53 MEZ
(*************** From: Christian Boettger

(*************** +49 (0)531 3915113 / 12010506 at DBSTU1 *********)

Modified slightly to change presentation
for the window manager
and to use the error reporting capability
of UNIT ErrorCod
by Nelson Ard
Last modification Sep 89

unit director;

interface

uses dos,crt, ErrorCod; {ErrorCod added}

procedure ViewDir(MatchPtrn : string; FromLine, ToLine : integer);
procedure ShowDir(MatchFtrn : string; FromLine, ToLine : integer;

var error : integer);

(* Reprinted from "Turbo Pascal 4.0 unit to read a directory and
display it" by Dipl. Phys. Christian Boettger, by permission of the
author.

********************** Continue Boettger Excerpt ********************)

156

(********************* Continue Boettger Excerpt *******************)
implementation

procedure StandBy;
var x,y : integer;

muell : char;
begin
x:=whereX; y:= WhereY;
HighVideo;
,write('Hit any key to continue ');
NormVideo;
repeat until keypressed;
muell := ReadKey;
write(' ');
Gotoxy(x,y);

end;

(* Reprinted from "Turbo Pascal 4.0 unit to read a directory and
display it" by Dipl. Phys. Christian Boettger, by permission of the
author.

************************* End Boettger Excerpt ********************)

157

(**~*************Start Verbraeck Excerpt *********)

procedure ViewDir(MatchPtrn : string; FromLine, ToLine : integer);

Ir. Alexander Verbraeclk, e-mail1:
Delft University of Technology winfave~hdetudl.bitnet
Department of Information Systems winfave~dutrun.uucp
PO Box 356, 2600 AJ The Netherlands

var
DirInfo :SearchRec;
Line
Position :integer;

begin
Low.Vi deo;
GntoXY(l ,FromLine); WWI~o;
Line:=FromLine; Posi tion:1I;
FindFirst (MeatchPtrn,$C7,Dirlnfo);
if DosErrarK > then

writelnf(*** NO FILES FOUND **

else
wjhile MDsError=) and (Line < ToLine)do
begin
GotoXY(FositionLine);
if Dirlnfo.Attr=l0 then HighVideo;
write (Dir Ini .Name);
LowVi deo;
Positior:=Position+16;
if Position>65 then
begin

Line: Linewl:
Fositi or: =1

end;
FindNext(Dir Info);

end-,
NormVi deo;

end;,

(*This portion reprinted from "Turbo Pascal 4.0 unit to read a
directory and display it" by Dipi. Phys. Christian Boettger, with
the permissioq of Ir. Alexander Verbraeck:, the original author.

*****************End Verbraeck Excerpt**********)

158

(*****************Start Boettger Excerpt**********)

procedure ShowDir(Match~trn :string; FromLine, ToLine :integer;
var error : integer);

Christian Boettger phone: (+49) (0)531/391-5113
mail: Institut fuer Metaliphysik und Nukleare Festkoerperphysik,

(room -167/-168), Technische Universitaet Braunschweig,
* Mendelssohnstrasse 3, D-3300 Braunschweig, land

Bundesrepublik Deutschland (West Germany / FRG / RFA)
EARN: I2010506CdDBSTUl.E4ITNET InterNet: boettger~julian.uwo.CA

UseNet: boettger@jul ian. UUCP
UUCP / UseNet:

(whereever) 'uunet 'watmath jLulian 'boettger
(whereever) 'uunet 'boettger@hydra.uIWO.CA
(whereever)!'uunet 'mcvax 'unido' i20lO5O6@DBSTUI .BITNET

var DirInfo : SearchRec;
start ,i
line,tml : integer-,

procedure WriteEntry(Dirlnfo :SearchRec; line : integer);
var DTi : DateTime;

attribut : string;

procedure Get~ttribut (attr :byte; var attribut :string);
begin

case attr of
ReadOnily ; attribut 'ReadOnly';
Hidden : attribut :'Hidden';
SysFile : attribult :='SysFilel;
VolumeID : attribut 'VolumeID';
Directory :attribut :'Directory';
Archive : attribut :='Archive';

else begin
Str(attr,attribuit);
attribut :='Attr ='+ attribut;

end;
end;

end;

(* eprintelf from "Turbo Pascal 4.0: unit to read a directory and
display it" by Dipi. Phys. Christian Boettger, by permission of the
aUthcor.

*****************ContinUe Poettger Excerpt**********)

(********************* Continue Boettger Excerpt ******************

begin (*of WriteEntry*)
with Dirnfo do

begin
UnPackTime(Time,dt);
GetAttribut(attr,attribut);
BotoXY(1,line); ClrEol;
IF attr = Directory THEN HighVideo;
write (Name);
GoToXY (13, line);
IF attr = Directory THEN
Write (DIR>)

ELSE Write (size B);
GotoXy (24, line);
Write (Name:12,' ',Size:," '); }

with dt do
begin

write(day:2,'-',month:2,'-',year:4, ";
write(hour:2,':',min:2,':',sec:2,' ";

end;
writeln(' ',attribut);
LowVideo;

end;
end;(*of WriteEntry*)

begin (*of ShowDir*)
M! := ToLine - FromLine;

start := WhereY+;
FindFirst(MatchPtrn, AnyFile, DirInfo);
case DOSError of

0 begin
WriteEntry(DirInfo,start);
line := start;
while DOSError=O do
begin

PindNext(DirInfo);
Inc(line);
if line>Ml then begin

StandBy;
line := start;
ClrScr;

end;
if DosError=O then WriteEntry(Dirlnfo,line)

* Reprinted from "Turbo Pascal 4.0 unit to read a directory and
display it" by Dipl. Phys. Christian Boettger, by permission of the
auth c-.

********************** Continue Boettger Excerpt ********************

160

(********************* Continue Boettger Excerpt ********************)

else begin
GotoXY(1,line);
ClrEol;
writeln;
CirEol;
writeln (Error-Code C DOSError 1,' 1');
writeln;
ClrEol;
GotoXY(1,WhereY);

end;
end;
error :=O;

end;
2 begin

GotoXY(l,start);
writeln(Error Code I DOSError I,' H');
writeln('Directory not found!:');
error := DOSError;

end;
i: begin

GotoXY(l,start);
writeln(ErrorCode C DOSError I,' H');
writeln(

'No Entries in directory that match pattern H');
error := DOSERROR;

end;
else begin

GotoXY(l,start);
writeln(Error Code E DOSError],'

error := DOSError;
end;

end;
end; (*of ShowDir*)

erd.

(* Reprinted from "Turbo Pascal 4.0 unit to read a directory and
display it" by Dipl. Phys. Christian Boettger, by permission of the
author.

********************** End Boettger Excerpt *********************

161

APPENDIX R

SOURCE LISTING FOR UNIT ERRORCOD

ERRORCOD.PAS
(**** This unit maps MS-DOS error codes returned by the
(**** operating system to strings to give the operator a
(**** human readable response.

(**** Reference: MS-DOS Version 3 Programmer's Utility Pack ****)
MS-DOS Reference Guide Volume 1
1986, pp. 4.86-4.88, 4.254-4.257.

(**** Developed by Nelson Ard

(**** Last modification Sep 89

UNIT ErrorCod;

INTERFACE

USES Dos;

CONNST Error Code : ARRAY [08..] OF
string[40] ('No errors',

'Invalid function code',
'File not 'ound',
'Path not found',
'No file handles left',
'Access denied',
'Invalid handle',
'Memory control blocks destroyed',
Insufficient memory',
'Invalid memory block address',
'Invalid environment',
'Invalid format',
'Invalid access code',
'Invalid data',
'RESERVED error code',
'Invalid drive',
'Attempt to remove the current directory',
'Not same device',
'No more files',
'Dish: is write-protected',
'Bad disl unit',

162

'Drive not ready',
'Invalid disk command',
CRC error',
'Invalid length (disk operation)',
'Seek error',
'Not an MS-DOS disk',
'Sector not found',
Out of paper',
'Write fault',

'Read fault',
'General failure',
'Sharing violation',
'Lock violation',
'Wrong disk',
'FCB unavailable',
'RESERVED error code',
'RESERVED error code',
'RESERVED error code',
'RESERVED error code',
'RESERVED error code',
'RESERVED error code',
'RESERVED error code',
'RESERVED error code',
'RESERVED error code',
'RESERVED error code',
'RESERVED error code',
'RESERVED error code',
'RESERVED error code',
'RESERVED error code',
'Network request not supported',
'Remote computer not listening',
'Duplicte name or network',
'Network name not foUnd',
'Network busy',
'Network device no longer exists',
'Net BIOS command limit exceeded',
'Network adapter hardware error',

'Inaorrect response from network,
'Unexpected network error',
'Incompatible remote adapt',
'Print queue full',
' ueue not full',
'Not enough space for print file',

'Network name was deleted',
'Access denied',

'Network: device type incorrect',
'Networ . name not found',
'Network name limit exceeded',
'Net BIOS session time exceeded',

emporari Iy paLsed',
'Networ: req~est not accepted',

167.

'Print or disk redirection is paused',
'RESERVED error code',
'RESERVED error code',
'RESERVED error code',
'RESERVED error code',
'RESERVED error code',
'RESERVED error code',
'RESERVED error code',
'File exits',
'Duplicate File Control Block',
'Cannot make',
'Interrupt 24 failure',
'Out of structures',
'Already assigned',
'Invalid password',
'Invalid parameter',
'Net write fault');

CONST ErrorClass ARRAY El..12] OF string[40] =
('Out of a resource',
'Temporary situation',
'Permission problem',
'Internal error in system software',
'Hardware failure',
'System software failure',
'Application program error',
Pile or item not found',
'Pile or item of invalid format',
"iie or item interlocked',

'Media failure - storage medium',
'Unknown error');

RecommendedErrorAction : ARRAY [1..7) OF String[40] =
('Retry, then prompt user',
Retry after a pause',
Reprompt user to reenter',
'Terminate with clean up',
"erminate immediately',

'Observe only',
'Retr i after correcting fault');

Error_Lccus ARRAY El..5] OF StringE403 -

'Unknown',
'Random Access block device',
'Related to a network',
'Related to serial access device',
'Related to RAM');

164

PROCEDURE Extended ErrorCode (VAR Error Code : INTEGER;
VAR Error Class : Byte;
VAR ErrorLocus : Byte);

{ Following an error code returned by an MS-DOS function call or
I/O function, this may be called for amplification on the
error }

IMPLEMENTATION

Var index : integer;

PROCEDURE Extended Error Code (VAR ErrorCode : INTEGER;
VAR Error Class : Byte;
VAR ErrorLocus : Byte);

Var Regs : Registers;

BEGIN
Regs.AH $59;
Regs.BX 0;
Intr($21, Regs);
Error Code Regs.AX;
Error Class Regs.BH;
Erro- Locus Regs.CH;

END;

BEG1IN
ENE.

165

I.I

APPENDIX S

SOLRCE LISTING FOR UNIT GENERAL

GENERAL.PAS W
(** This is a library of general purpose routines to augment the **)

(** features of Turbo Pascal 4.0. This UNIT requires the standard**)
(** units CRT and DOS supplied with the Turbo Pascal 4.0 compiler **)
(** in order to compile. W

(** Reference: Edwards, C. C., Advanced Techniques in W
Turbo Pascal, pp. 66 - 73, Sybex, Inc., 1987

(** Modified from a Turbo Pascal 3.0 include file to a W
(** Turbo Pascal 4.0 UNIT by Nelson Ard
**

(** Last Modification: Sep 89
************************************fl *****************************)

(************************ Start Edwards Excerpt ******************)

UNIT General:

INTEPFACE

Do=-,u:: rt
ft=

TYCE

LongoString = String[255];

He. _Type = String[2];

CursorType=(CursorSmall,Cursor Large,CursorInvisible);

(* Reprinted with some modification from Advanced Techniques in Turbo
Fascal Lv Charles Edwards, by permission of Sybex, Inc. Copyright
190--'yh, In-. All rights reserved.

****+4** ********** Cotinue Edwards Excerpt ********************)

166

(******************** Continue Edwards Excerpt ********************)

Procedure FillWord(Var V; Nuni,Value:integer);
(*This procedure is similar to the Turbo procedure FiliChar, except
that it fills the variable with a 16 bit word value rather than an
8 bit character.*)

Procedure Exchange(Var S,D; L:Integer);
(*This procedure is a fast machine languge routine to exchange the
contents o; two variables. No test is made concerning the
compatibility of the variables. That is left to the programmer.*)

Procedure Beep (Freq: Integer);
(*This procedure produces a tone for 1/4 second*)

Fun-:tion Max (X,Y:Integer):Integer;
,*M..:. returns the larger of two integers*)

Functior Min(Y,Y:Integer):Integer;
(*Ma.- returns tre smaller of two integers*)

Pro.:edure C rsor Size(Size:Curso- Type: Mono:Boolean);

procadure changes the cursor into either an underline or a
blok: CLrsor

irpLt: Size = Cursor _Smrel creates en underline cursor
CursorLarae create= E bi---k cursor
CrLso- Itlvisible c-eates an .nvisible cursor

M_-rC = T-uLe 40r a monochrome screen
alse for e colo<rgraphics card

Fu- G T i re: LongStri ng;
(*This procedu-e returns the time in the form HH:MM:SS xM*)

R Repr:ited with some modificetion from Advanced Techniques in Turbo
Fascal by Charles Edwards, by permission of Sybe>, Inc. Copyright
i SYt e u, n:. All rights rese-vec.

******************* Eontinue Edwa'ds E' cerpt *******************

IMPLEMENTATION

(******************** Continue Edwards Excerpt ********************)

Procedure FillWord(Var V; Num,Value:Integer);
(*This procedure is similar to the Turbo procedure FillChar, except

that it fills the variable with a 16 bit word value rather than an
8 bit character.

Input: V: The variable which is to be filled
Num: The number of words to full with the value
Value: The 16 bit word to be stored in V

Begin
Inline($C4/$BE/V (*LES DI,VEBP]*)

/$8B/$8E/Num (*MOV CX,[Num+BP]*)
/$B/$26/Value (*MOV AX,[Value+BP]*)
/$FC (*CLD*)

(*REPNZ STOSW*)

End; (*of FillWord*)

Procedure Exchange(Var S,D; L:Integer);
(*This procedure is a fast machine languge routine to exchange the

contents of two variables. No test is made concerning the
compatibility of the variables. That is left to the programmer.

Input: S,D: The variables tc be exchanged
L: The number of bytes to exchange

Begi7
Iniine($1E (*PUSH DS*)

/$C5/$B6/S (*LDS SI,S[BF]*)
/$C4/SBE/D (*LES DI,D[BF"*)
/BiBE!L (*MOV CX,[L+BP]*)
/$FC (*CLD*)
/$26/$8 A C5 (*L: MOV AL,ES:[Di]*)

(*EXCH [SI],AL*)
(*INC SI*)

ISAA (*STOSB*)
ISE21$F7 (*LOOF L*)

(*POP Dl*)

End, (*o E-'change*)

* Reprinted with some modification from Advanced Techniques in Turbo
Pascal by Charles Edwards, by permission of Sybex, Inc. Copyright
1987 Syte , Inc. All rights reserved.

**************~**** CotinLe Edwards Excerpt *******************4*

168

(******************** Continue Edwards Excerpt ********************)

Procedure Beep(Freq:Integer);
(*This procedure produces a tone for 1/4 second*)

Begin
NoSound; (*Reset flag*)
Sound(Freq);
Delay(250);
Nosound;
End; (*of Beep*)

Function Max(X,Y:Integer):Integer;
(*Ma. returns the larger of two integers*)

Begin
If X < Y then

Max: =Y
else

Ma : =X,
End; (*of Max*)

Function Min(XY:Integer):Integer;
(*Max returns the smaller of two integers*)

Begin
i. X Y then

Min:=X
else

Min:=Y;
End; (*of Min*)

Procedure CursorSize(Size:CursorType; Mono:Boolean);
(*This procedure changes the cursor into either an underline or

a block curso-

Input: Size = CursorSmall creates an underline cursor
CursorLarge creates a block cursor
Cursor T nvisible creates an invisible cursor

Mono = True for a monochrome screen
False for a color/graphics card

Con st
C-irsor -Values:Array E ..7] of Integer = ($0607,$O007,$OCOD,$OOOD);

Var Regs:Registers;
Begin
Regs. AX:=$0100;
i Size = Cursor Invisible then

Regs. CX:=$2617

(* Reprinted with some modification from Advanced Techniques in Turbo
Pascal by Charles Edwards, by permission of Sybex, Inc. Copyright
1 B7 Svbei, Inc. All rights reserved.

********************* Continue Edwards Excerpt *********************

169

********************* Continue Edwards Excerpt ********************)

else
Regs. CX:=CursorValues[Ord(Mono)*2+Ord(Size));

Intr($10,Regs);

End; (*of Cursor_Size*)

Function Get-Time:LongString;
(*This procedure returns the time in the form HH:MM:SS xM*)

Var Regs:Registers;

Hour,Min,Sec,M:String[2];

I:Byte;

Begin
Regs. AH:=$2C;

MSDos(Regs);
Str(Regs.CL:2,Min);
Str(Regs.DH:2,Sec);
For I:=1 to 2 do

Begin
if MinEl]' then Min[I]:='O';

If Sec[I]=' "then Sec[I]:='O';
End;

Case Regs.CH of
O: I:=12;

1..-27: I:=Regs.CH-12;
else I:=Regs.CH;

End; (* of case*)
Stre (I:2,Hour),;

If HourEl]=' 'then Hour[l]:='O';

If Regs.CH 1 12 then
M:= 'AM'

else
M:='FM'

GetTime:=Hour+':'+Min+':'+Sec+ ' '+M;

End; (*of Get-Time*)

PE3IN
END.

(* Reprinted with some modification from Advanced Techniques in Turbo

Pascal by Charles Edwards, by permission of Sybex, Inc. Copyright

1Q87 SvbeN, Inc. All rights reserved.

******************** Continue Edwards Excerpt ********************)

170

APPENDIX T

SOURCE LISTING FOR UNIT HISCPACK

J

MISCPACK.PAS
(**** This contains common data structure declarations for
(**** several units and a couple of utility routines.
(**** Derived from the include file of the same name in the ****)

(**** reference.

(**** Reference: Swan, Turbo Pascal Files, 1987, pp. 14 - 26 ****)

(**** Developed by Nelson Ard

(**** Last modification Sep 89

UNIT Miscpack;

{ USES no other packages }
15 Jul 89 - Added string128, responsetype }
1 P JL 1 89 - Added buffer for xmodm }
11Sep 69 - deleted Va2Hex I

INTERFACE

CONS T

*********************** Start Swan Excerpt *************************)

{ String Lengths }

PathLer = 65; { Maximum complete path name length + 1 }
FileLen = 12; { Maximum file name length (with extension) }
NameLen =; { Maximum file name length (without extension) }
ExtnLen =. { Maximum file extension length I
DriveLen = 2; Maximum drive letter string }

Typing helpers

NuliStr = No blank between the quotes }
Blant = "; { A single blank character I

(* Reprinted with some modification from Mastering Turbo Pascal Files
By Tom Swan, by permission of Howard W. Sams and Company. Copyright
1967 Howard W. Sams and Company. All rights reserved.

************************ Cortinue Swan Excerpt **********************

171

(*********************** Continue Swan Excerpt *********************)

t Keyboard control code translations }

KeyRight= ^D; C Right arrow I
KeyHome = 'W; Home

KeyUp = AE; { Up arrow }
KeyPgUp = 'R; { PgUp)
KeyLeft = ^S; f Left arrow }

KeyEnd = 'Z; { End)
KeyDown = ^X; (Down arrow }

KeyPgDn = -C; (PgDn I

KeyIns = 'V; Ins }

KeyDel = ^G; { Del I

TYPE

C File and path name strings }

PathString = String[PathLen]; { C:\TURBO\TEST.PAS }

FileString = String[FileLen]; 1 TEST.PAS }

NameString = String[NameLen]; { TEST }

ExtnString = StringE ExtnLen I; C PAS

DriveString = String[DriveLen 2; C: }

Other strings

HexSt- = String[4 2; { 4 - digit hex strings (FC9A)

Str&) = String[80 2; { 80-character strings }
string12 = String[128 2;

{Miscellaneous types I

Pointer = Byte; t Pointer to memory bytes }

CharSet = SET OF CHAR; { Character sets }

Added for Spawn, Intrinsic Exec calls I

Responsetype = (strng, filetype, nothing);

A Added for Parser, xmodm 3

CONST
Maxblock = 1024;

(* Reprinted with some modification from Mastering Turbo Pascal Files

By Tom Swan, by permission of Howard W. Sams and Company. Copyright

1967 Howard W. Sams and Company. All rights reserved.
************************ Continue Swan Excerpt **********************

172

(*********************** Continue Swan Excerpt *******************

TYPE
Buffer = ARRAY 1. .Maxblock] OF CHAR;

PROCEDURE BumpStrUp VAR s : String);

{ Convert (bump) all chars in string s to uppercase 3

IMPLEMENTATION

PROCEDURE BumpStrUp (VAR s : String);

C Convert (bump) all chars in string s to uppercase I

VAR

i : INTEGER; {String index }

BEGIN
FOR i := I to Length(s) DO

S[i] := UpCase(sli])
END; { BumpStrUp "

BEGIN -LUnjit- initiA =l izaton J'

EN . C UNIT Miscpack I

c* Reprinted with some modification from Mastering Turbo Pascal Files
By Tom Swan, by permission of Howard W. Sams and Company. Copyright
1967 Howard W. Sams and Compan-y. All rights reservec.

************************** End Swan EXcerpt **********************

173~

APPENDIX U

SOURCE LISTING FOR UNIT PASER

PARSER. PAS
(**** This is the unit that executes all commands for the
(**** Slave computer.

(**** References: Hall, W.V., "When Turbo Isn't Enough," in ****)

Shammas, N.C., The Turbo Pascal Toolbook, ****)
pp. 14S - 146, M & T Publishing, Inc., 1986.****)

Mefford, M.J., "Running Programs Painlessly ****)

PC Magazine, v. 7, 16 February, 1988.

(**** Developed by Nelson Ard

(**** Last modification Sep 89

UNIT Parser;

C 8 Nov 88 B
{ 5 June 89 - changed sets to constants,
{ 9 June 89 -addet

argv, argc functions
adjusted parsename to correctly parse long filenames,

{ 19 jun 89 - added buf to string, string to bufr

{ 20 Jun 89 - added Resolve-command to prepare for EXEC call 3
{ 12 Jul 89 - moved Matchcommand, internal command constructs to spawn,

added response construct to parser_main)
{ 4 Aug 89 - deleted Intrinsic from USES statement }

INTERFACE

USES MISCF'ACF, Ero-Cod, Spawn, Dos;

PROCEDURE Parserpir (Commands : string128;
VAR Response : String128;
VAR Restype : Responsetype;
VPR Error msg : String128;
VAR Errtype : Response type;
VAF Prompt : String128);

174

{ This procedure parses an MS-DOS command and executes it locally

Input: Command s is the command to be executed with path

Output: Response is the output of the program
Restype is the type of Response (string, file, nothing)
Error_Msg is the error output of the program
Errtype is the type of Error_Msg (string, file, nothing)
Prompt is a simulated command line prompt after program
execution

IMPLEMENTATION

TYPE
argtype = (opt, other);

argrec = RECORD
argtype : argtype;
arglength : byte;
argindex : byte;

END;

argarray = ARRAY [0..9] OF arg_re:;

SETOFCHAR set of char;

commandbuffer = ARRAY 11..123 OF char;

CONST
SPA~CE =

TAB = H
COMMA =
SEMICOLON = ; ;
COLON "

PLUS =
MINUS = "-;

SLASH =

BACiKSLASH =

DOT
STA =

NUL =

TILDE =

Path or drive : SETOFCHAR = C COLON, BACKSLASH];
Node ordrive : SETOFCHAR = C COLON];
argseparator : SETOFCHAR = C SPACE, COMMA, SEMICOLON, PLUS, MINUS];
whitespace : SETOFCHAR = C SPACE, TAB J;
optior : SETOFCHAR = C SLAS I;
NUiISt'lng : PathString =

175

VAR
argarray : argarray;
argcount : byte;
Command-line : PathString;
index : byte
count : byte;
(* This variable for use ** only ** by argv() *)

argstring : string128;

PROCEDURE Parse (Command : string128);

{ Used by ParserMain to count and isolate the command line
parameters. This procedure loads argc and argv 3

VAR
index : byte-

BEGIN
aro_string := Command; {save a copy of the command'
FOR arg-count: 0 TO 9 DO
WITH Arg_array [argcount] DO BEGIN
argtype := OTHER;
aro lenth := Q,
argindex := 0.:

END;
index:
jrg_cCunt: 0;
REPEAT
WHILE (index < Length (Command

AND (Char (Command E index]) IN whitespace) DO
INC(index);

WITH arc-array I arg-count I DO BEGIN
IF inde;-<. Length (Command) THEN

CASE Command C index I OF
TAB, SPACE : BEGIN

END;

SLASF : IF index .< length (Command) THEN
BEG IN

(*INC (index);*)
arg_length 2; (*i*)
argindex index;
argtype opt;
INC (index);
INC (index);
INC (arg count);

END;

176

ELSE BEGIN
argindex index;
argtype : other;
arglength : 1;

INC (index);
WHILE (index <= Length (Command)) AND

NOT (Char (Command [index 3) IN whitespace
AND NOT (Char (Command E index)) IN option
DO BEGIN

INC (arg_length);
INC (index);

END;
INC (argcount);

END; {BEGIN}
END CASE>-

END t WITH 33
UNTIL index >= length (Command);

END; {Farse]

FUNCTION argc : byte;

I Returns a count of the number of arguements on the command
line

BEG I N
argo arg count;

END;

FUNCTION rgv. (arg count : byte) stringl28;

{ Returns the argcount'th arguement from the command
line }

VAr-
index : byte;
temp : string128;

BEG i N
temp := Nullstring;
WITH argarray E arg count 3 DO
FOR indev := argindex TO (argindex + arglength - 1) DO

temp := temp + arg_string C index 3;
argv := temo;

END;

177

(**************************** Start Hall Excerpt ********************)

PROCEDURE ParseName (inName PathString; VAR nameSpec : NameString;
VAR extnSpec : ExtnString;
VAR fylespec : Filestring;
VAR pathSpec : PathString;
VAR driveSpec : DriveString;
VAR nodeSpec : NameString);

f Breaks down a filespec into its component parts for ParserMain,
Resolve command. Fro,. the Hall reFerence }

VAR
Count : Byte;
DotPos : Byte;
StarPos : Byte;
index : integer;
f+lespec : pathstring;

BEGIN
Count := Length (InName);
{$sV-}

MiscPack. BumpStrUp(InName);
{V+

IF (InName[Count] IN Path or drive) THEN
do nothing }

ELSE BEGIN
REPEAT
Count := PRED(Count);

UNTIL (Co'unt = 0) OR (InName[Count] IN Path or drive)
END;

{Isolate Filename)
{ Copy (Source, Startpos , No of Char) }
fileSpec := Copy (InName, Count + 1, LENGTH (InName) - Count);
DELETE (InName, Count + 1, LENGTH(InName) - Count); {Chop tall off}
IF (Count 2: 2) THEN

IF (InNameECountI <>) THEN
REPEAT
Count := PRED(Count);

UNTIL (InName[Count] IN Node or Drive) OR (Count = 0);

(* The library ParseName appears in The Turbo Pascal Toolbook by Namir
C. Shammas (ed.) and has been reprinted with the permission of the
publisher M & T Books 1-800-533-4372. Minor modifications by Nelson
A-d.

************************* Continue Hall Excerpt *********************)

172'

(************************ Continue Hall Excerpt *********************)

CASE Count OF

0 : pathSpec := InName;

1 : t Syntax Error };

ELSE BEGIN
pathSpec := Copy (InName, Count + 1, LENGTH (InName) - Count);
Chop tail off}

DELETE (InName, Count + 1, LENGTH(InName) - Count);

CASE InName[PRED(Count)] OF

COLON : BEGIN
?Chop tail off!
DELETE (InName, Length (InName) - 1, 2);
nodeSpec InName;

END;

"A'..'Z' BEGIN
driveSpec InNameEPRED(Count)] + :
DELETE (InName, Count - 1, 2); Chop tail off.
Count := Length(InName);
IF (Count > 2? AND (POS('::', InName) = Count - 1)

THEN IF LENGTH(InName) > 10 THEN
nodeSpec := Copy (InName, 1, 8)

ELSE nodeSpec := Copy (InName, 1,
LENGTH (InName) - 2)

ELSE { Syntax error in node part]

F Count > 0 THEN

ENT-,

ELSE Syntax Error, drive nct alpha character };

END; tCase}
END;

END; CCase3

CAdjust filename)
DotPos := POS(DOT, fileSpec);
IF DotFos <> 0 THEN BEGIN

extnSpez := COPY(fileSpec, DotFos + 1, 3);

(* The library ParseName appears in The Turbo Pascal Toolbook by Namir
C. Shammas (ed.) and has been reprinted with the permission of the

publisher M & T Books 1-800-573-4772. Minor modifications by Nelson
Ard.

************************* Continue Hall Excerpt *********************

17c

(********~********** Continue Hall Excerpt ***********

DELETE(fileSpec, DotPos, (LENGTH(fileSpec) - DotPos)+l);
END
ELSE

extnSpec .

IF LENGTH(fileSpec) > 8 THEN
DELETE(fileSpec, 9, LENGTH(fileSpec)-8);

StarPos POS(STAR, fileSpec)
IF StarPos 0>C THEN BEGIN

DELCTE(fileSpec, StarPos, (LENGTH(fileSpec)-StarPos)+l);
FOR Count := LENGTH(fileSpec) TO 7 DO

fileSpec:= fileSpec +
END;

Namespec :=filespec;
StarPos :=POS (STAR, extnSpec);
IF Star~os *-.:0 THEN BEGIN

DELETE(ex..tnSpec, StarPos, (LENGTH(fileSpec)-StarPos)-l);
FOR Count LENGTH(extnSpec) TO 2 DO

extnSpec exltnSpec +';
END;
INOT (evtnspec =NUlistring) THEN
fylespec :=Narespec + DOT + extnspec

ELSE fylespec :=Namespec;
END;

t* The libr-ary F&'rseName appears in The Turbo Pascal Toolbook by Nami-
C. Shammas (ed.) and has been reprinted with the permission of the
publisher M ?o T Books 1-800-5713-4--'72'. Minor modifications by Nelson
Ard.

*************.********* End Hall Excerpt ***********

!NY-E -" used b,. Fesoive Command and Parser Main 3

Type of _file = (BAT Pile. COM File, EXEFile, Directoree, OtherFile,

Fc-thname)z'

VAR {iiitiaiz:el by. Farser Main for resolve-command
pathSpec :Path~tring;
fileSpec :fileString;
nodeSpe:,
nameSpec :NameString;
ex.tnSpec :E.:tnStrinG;
driveSpec :DriveString;

FUNCTION Resolve-command (VAR arguement : PathString) : Type of file;

{ The MS-DOS Exec function needs a complete file specification (drive,
path and filename including extension to run a child process.
Resolve-command examines the first arguement in an MS-DOS command
line, arguement, and fills out the complete path information if
needed, then uses this path to conduct a file search for the
exact filename. The completed file specification is returned to
the caller along with the type (COM, EXE, BAT, or path) for
execution or directory change action. The building blocks
needed to construct the complete file specification have been
placed in the variable immediately above by ParseName. The
deterministic algorithm for detecting the correct executable file is
from (Mefford, 1988, p. 327).

Input: arguement, the command file to be searched for

Output: arguement, adjusted to specify a complete path
The function returns the type of file as an enumerated type

VAP
DirInfo : SearchRec;
resolved,
reiAtive directory boolean;
Dir : PathString;

BEGIN
resolved := FALSE;
Get7ir (0, Dir);
{ lack of a leading backslash could mean a simple
request to log to another drive }

relative directory (pathSpec C 1 J <; BACKSLASH
IF relative directory AND ((Dir [I] = driveSpec [I]

OR (Drivespec = BLANK)) THEN
{ Fill out the complete path specification
arguement := Dir + BACKSLASH + arguement;

IF extnSpec = NullString THEN BEGIN

{ The command does not have a file extension, could be a
directory. Search the now complete path for a file
with the same name, in the reverse order that the
MS-DOS command processor would. Add the appropriate
e:ftensior to arguement if matched. End up with the
file with precedence to execute. I

181

FindFirst (arguement + '.BAT', Archive, DirInfo);
WHILE DosError = 0 DO

BEGIN
IF Dirlnfo.attr AND Archive > 0 THEN BEGIN

arguement := arguement + '.BAT';
resolve-command := BATFile;
resolved := TRUE;

END;
FindNext (Dirlnfo);
END;

PindFirst (arguement + '.COM', Archive, DirInfo);
WHILE DosError = 0 DO

BEGIN
IF Dirlnfo.attr AND Archive <> 0 THEN BEGIN

arguement := arguement + '.COM';
resolve-command := COMFile;
resolved := TRUE;

END;
FindNext (DirInfo);
END;

FindFirst (arguement + '.EXE', Archive, DirInfo);
WHILE DoError = 0 DO

BEGIN
IF Dirlnfo.attr AND Archive <> 0 THEN BEGIN
arguement := arguement + '.EXE';
resolve-command := EXE File;
resclved := TRUE;

ENE;
FindNext (Dirrnfo);
END;

END
ELSE BEGIN { extension not NULL, ready to execute }

IF (extnSpec = "COM') THEN BEGIN
Resolvecommand := COMFile;
resolved := TRUE;

END
ELSE IF iextnSpec = 'BAT') THEN BEGIN

Resolve command := BAT File;
resolved := TRUE;

END
ELSE IF (extnSpec = 'EXE') THEN BEGIN

Resolve command EXEFile;
resolved := TRUE;

END

ELSE BEGIN
Resolve command := Otherfile; I a path specification ?
resolved := TRUE;

END
END;

182

(* changed this *)
IF NOT resolved THEN BEGIN
FindFirst (arguement , Directory, DirInfo);
WHILE DosError = 0 DO

BEGIN
IF Dirlnfo.attr AND Directory <> 0 THEN BEGIN

Resolve command := Directoree;
resolved := TRUE;

END;
indNext (DirInfo);

END;
END;

IF NOT resolved THEN Resolve-command := Pathname;
END; {ResolveCommand}

PROCEDURE Parser main (Command s : stringl28;
VAR Response : Stringl28;
VAR Restype : Responsetype;
VAR Error msg : String128;
VAR Errtype : Response type;
VAR Frompt : String128);

" Thi:s proce 4..re parses a command line similar in form to an
MS-DgS commean, and executes it if possible on the local
mach. ne

Input: Command s is the command to be executed with path

Output: Response is the output of the program
Restype is the type of Response (string, file, nothing)
Errcr_Msg is the error output of the program
Errtype is the type of ErrorMsg (string, file, nothing)
Prompt is a simulated command line prompt after program

execution

CONST NllString : String =
Current-Drive : byte = 0; { used with ChDir }

VAR
Command : Internal Command;
arg count : byte;
inde : byte,
ci e.

S83

CurrentDir,
programname : PathString;
Filetype : TypeofFile;
Batch : boolean;

PROCEDURE Initparse;

{ Break the command line into parameters, store the components
of the first arguement (normally the command itself) I

VAR
index : byte;

BEGIN
Parse (command s); { load argc, argv }
pathspec argv(O);
filespec Nullstring;
extnspec Nullstring;
drivespec NullString; IBlank; 113
nodespec Nullstring;
{ now break the first arguement into components 3
Parsename (pathspec, NameSpec, extnSpec, fileSpec,

pathspec, drivespec, nodeSpec);

END; { IritF'ars- 3

BEGIN
IrntParse;

Ip Lenoth (Drivespec =) AND (argc = 1
{ Drive change only I
THEN BEGIN

command s := 'CD ' + commands;

Init_Parse; T redo with added command }
END;

IF Match command (FileSpec, Command) THEN BEGIN
f command can be handled by * this * program }
IF argc'= 1 THEN BEGIN
cmdline := Nullstring; { no command tail I
FCR index I TO (argc - 1) DO

Cmdline Cmdline + argv(index) + SPACE;
{ trim trailing space }
IF Cmdline I Length (Cmdline) I = SPACE THEN
Cmdline := Copy (Cmdline, 1, Length (Cmdline) - 1);

END;
{ process as a built in function I
Process intrinsic command (Command, cmdline, Response, Restype,

Error_msg, Errtype, Prompt);
END

184

ELSE BEGIN { prepare for a child process }
programname := argv(O);
FileType := Resolve-command (Program_Name);
CASE File Type OF
COMFile,
EXEFi le,
BAT File : BEGIN

Batch : (File Type = BAT_File);
cmdline : NullString;

IF argc 1 THEN FOR index := 1 TO argc - 1 DO
Cmdline : Cmdline + SPACE + argv(index);

Run-Local (Programname, cmdline, Response, Restype,
Errormsg, Errtype, Prompt, Batch);

end;
ELSE BEGIN (command did not parse, notify Master)

Errtype := nothing;
System.GetDir (CurrentDrive, Prompt);
Prompt Prompt +
Restype strng;
Response :' Slave: syntax error';

END; {ELSE}
END: -,A9E3

END:
END7. -Firser main}

END,

18 5

APPENDIX V

SOURCE LISTING FOR UNIT REDIRECT

}

REDIRECT.PAS
(**** This is the unit that accomplishes redirection of the ****)
(**** Standard Input and Output file handles normally assigned ****)
(**** by the MS-DOS command processor to files to capture the ****)
(**** output of a program running under the Slave computer
(**** control. Variables are loaded with the file names for ****)
(**** later reference.

(**** Reference: Defenbaugh, G., "Parents, Children,
Redirection, and Piping with DOS Functions ****)
45H and 46H, Programmer's Journal, Nov/Dec ****)
986, pp. 22-25.

(**** Developed by Nelson Ard

(**** Last modification Sep 89

UNIT Redirect;

(* Modification history

22 Jul 89 - Chained ErrorNum variables through Close File Handle
call

- Placed two string variables in interface section for
external units to find filespec for the response, error
files while using standard TP file functions

4 Aug 89 - Absorbed FileDerl UNIT as include file *)

INTERFACE

USES Dos, Crt, Miscpack;

PROCEDURE Restore CRT Assignments;

{ Optional procedure to replace the standard files Input and Output
with te>tfile drivers in the CRT unit for speed. In turns out that
the CRT Unit does this on initialization, but disallows I/O
redirection by doing so
(Turbo Fscel Owner's Handbook, 1987, p. 377) }

186

PROCEDURE InitRedirectUnit;

-{ Required to reset I/O to the MS-DOS standard file handles, which
may then be redirected }

FUNCTION RedirectStdInput : boolean;

{ Redirect program input from a predefined file)

FUNCTION RedirectStd Output : boolean;

{ Redirect program output to a predefined file I

FUNCTION RedirectStd Error : boolean;

{ Redirect program error output to a predefined file I

FUNCTION RedirectAllOutput : boolean;

{ Redirect program output and error output to a predefined file I-

FUNCTION Restore_Std_ Input : boolean;

{ Restore program input to the standard file handle }

FUNCTION RestoreStdOutput : boolean;

- Restore program output to the standard file handle 3

FULN.CTION RestoreStdError boolean;

{ Restore program error output to the standard file handle 'i

FUNCTION RestoreAllOutput boolean;

Restore program output and error output to the standard file handle .

Response_File,
ErrorsFile PathString;

IMPLEMENTATION

CONST fThese are the predefined standard and redirected files)
• MS-DOS predefines the following handles)

StdIn : word = 0; (* File handle for Standard Input *)
StdOut : word = 1; (* File handle for Standard Output *)
StdErr : word = 2; (* File handle for Standard Error *)
StdAu' : word = 7; (* File handle for Standard Auxiliary *)
StdPr : word = 4; (* File handle for Standard Printer *)

IReirection takes place from/to these filesl

187

StdOutputFile_Temp String[21] = 'C:\Scratch\OTPT.TMP';
Std InputFileTemp String[21] = 'C:\Scratch\INPT.TMF';
Std-Error-File_Temp String[21J = °C:\Scratch\Err.TMP';

CONST MakeDir Byte = $39;
RemoveDir Byte = $3A;
ChangeDir : Byte = $3B;

Create-Handle Byte = $3C;

OpenHandle Byte = $3D;
Close Handle : Byte = $3E;

Read-Handle : Byte = $3F;
Write-Handle Byte = $40;

DeleteEntry : Byte = $41;
MovePtr Byte = $42;

ChangeMode : Byte = $43;
Dup_Handle Byte = $45;

FDupHandle Byte = $46;

GetDir Byte = $47;

FindFirstFile : Byte = $4E;

Find-NextFile Byte = $4F;

VAR

Input_File,

Error_Pile,
OutputPile : Text;

SavedStd In,

Saven_Std_Out,

Saved_Std_Err,
RedirIn,
RedirOut,

RedirErr : word;

PROCEDURE InitRedirectUnit;

t Optional procedure to replace the standard files Input and Output
with textfile drivers in the CRT unit for speed. In turns out that

the CRT Unit does this on initialization, but disallows I/O

redirection by doing so

(Turbo Pascal Owner's Handbook, 1987, p. 377) 3

BEGIN
Assign (Input, '

Reset (Input);
Assigr Output, ')

Rewrite (Output);

END;

FUNCTION Duplicate-Handle (Handle : word;
VAR ErrorNum : word) : word;

{ Input: Handle, a file handle to an open file
Output: The function returns a second file handle

for the same file. Both handles use the same
file pointer
ErrorNum is returned by MS-DOS:
$04 : No free handles left
$06 : Handle is not currently open

VAR Regs Registers;

BEGIN
Regs.AH : DupHandle;
Reos.BX Handle;
intr($21, Regs);
IF (Regs.Flags AND FCarry) = 0 THEN BEGIN
DuplicateHandle := Regs.AX

END
ELSE BEGIN

ErrorNum := ErrorNum + Regs.AX;
DuplicateHandle := $FF

END
END ;

FU:7TION CloseFileHandle (Handle : word;
VAR ErrorNum : word) : Boolean;

C Input: Handle, a file handle to an open file
Output: The function returns TRUE if the operation was successful

and the file closed. All internal buffers are flushed.
If FALSE, an invalid handle was specified.
ErrorNum is returned by MS-DOS:

$06 : Handle is not currently open

VAR Regs : Registers;

BEG I N
Regs.AH := Close-Handle;
Regs. AL $0;
Regs.BX = Handle;
lntr($21, Regs);
IP (Regs.Flags AND FCarry) = 0 THEN BEGIN
CloseFileHandle := TRUE

END

189

ELSE BEGIN
ErrorNum := ErrorNum + Regs.AX;
Close File Handle := FALSE;

END
END;

PROCEDURE Redirect-Handle (Handle, Red-Handle : word;
VAR ErrorNum : word);

{ Input: Handle, a file handle to an open file
Red-Handle a file handle to a second file

Output: The file referenced by RedHandle is closed
Red Handle now uses the same file pointer as
Handle, and either may be used to acces the file
ErrorNum is returned by MS-DOS:

$04 :No free handles left
$06 Handle is not currently open

VAR Regs : Registers;

BEG 1 N'
;egs.AH :: FDupHandle;
Regs.BX : Handle;
Regs.CX Red-Handle;
Intrt$21, Regs);
iF k Regs. Flags AND FCarry) = 0 THEN BEGIN

END
ELSE BEGIN

ErrorNum := ErrorNum + Regs. AX;
END

END;

FUNCTION Redirect StdOutput : boolean;

{ Redirect program output to a predefined file

On entry, StdOut refers to the standard output
device driver. A copy of StdOut is saved, and
StdOut is redirected to our predefined output file

The function returns TRUE if successful

VAR ErrorNum : word;

BEGIN
ErrorNum := 0;
Assign (OutputFile, Std_Output File Temp);
Rewrite (OutPutFile);

190

SavedStdOut := Duplicate Handle (StdOut, ErrorNum);
Redirect-Handle (TextRec(Output-File).Handle, StdOut, ErrorNum);

RedirectStdOutput (ErrorNum = 0);

END;

FUNCTION Restore StdOutput : boolean;

(Restore program output to the standard file handle

On entry, StdOut refers to our predefined file
StdOut is rereferenced to the standard output
device driver

The function returns TRUE if successful

VAR ErrorNum : word;

BEG I N
Er-orNum := (q
Redirect Handle (SavedStd_Out, StdOut, ErrorNum);
IF Close FileHandle (SavedStdOut, ErrorNum) THEN
{$i-)

Close (Output_File);
IP OResult = C) THEN BEGIN

ResponseFile := Std Output_File_Temp;
RestcreStd OUtput (ErrorNUm = 0;
END

S-_E BEGIN
ResponiseFile := NuliStr;
;estoreStdOutcut := FALSE:

END;

E.E

cUNCTION Redirect _Std_Inpu!t : boolean;

Redire.-t program input from a predefined file

On entry, Stdin refers to the standard input

device driver. A copy o4 Stdln is saved, and
Stfin is redirected to our predefined input file

The functilon returns TRUE if successful

V.ZR ErrOrNUT : word;

BEC-Tr

E Zro T-, ,.,PN , = ;
AS~-__ (InputFi le, StdInput Fi leTern: ',

Reset (InPutFile);
Saved-StdIn := DuplicateHandle (Stdln, ErrorNum);
Redirect Handle (TextRec(Input File).Handle, Stdln, ErrorNum);
RedirectStd Input (ErrorNum = 0);

END;

FUNCTION RestoreStd_ Input : boolean;

{ Restore program input to the standard file handle

On entry, Stdln refers to our predefined file
StdIn is rereferenced to the input
device driver

The function returns TRUE if successful

VAT ErrorNwm : word;

PESIN
ErrorNum := 0:
Redirect Handle (Saved _Std_In, Stdln, ErrorNum);
{SI-7
Close (InputFile
IF CloseFileHandle I SavedStdIn, ErrorNum) THEN;
RestoreStdIrpLt ErrorNum = 0) AND (IOResult > 0);

END;

FUNCTICON Rediret, SEra-or :boolean;

C Redirect program error otput to a predefined file

On ertr.v Std~rr rees tc the standard output
device d-iaer. A c StdErr is saved, and
StdErr is -ed -. td to outr predefined error file
7verzome ii._bi-_. no redirect from the MS-DOS
command, ir&

-E f,,cticn TRUE if successful

VAP E-rorNum : word;

BEGIN
ErropNum := 0;
Assign (ErrorFile, StdError_File_Temp);
Rewrite (Error File j;
Seved StdErr := Duplicate Handle (StdErr, ErrorNum);

192

Redirect Handle (TextRec(Error File).Handle, StdErr, ErrorNum);
RedirectStdError : (ErrorNum = 0);

END;

FUNCTION RestoreStdError : boolean;

{ Restore program error output to the standard file handle

On entry, StdErr refers to our predefined file
StdErr is rereferenced to the output
device driver

The function returns TRUE if successful

VAR ErrorNum :word;

BEGIN
ErrorNum : ;
Redirect Handle (SavedStd_Err, StdErr, ErrorNum);
{ $1- }
Close (Error File);
IF Close File Handle (Saved StdErr, ErrorNum) THEN;
IF IOResult 0 THEN BEGIN
ErrorsFile := StdErrorFileTemp;
RestoreStd Error ErrorNur = 0);
END

ELSE BEGIN

Errors File := NullStr;
Restore Std Error := FALSE;

END

END;

=UNCTION Redirect_All_Output: boolean;

{ Redirect program output and error output to a predefined file

On entry, StdOut refers to the standard output
device driver. A copy of StdOut is saved, and
StdOut is redirected to our predefined output file

On entry, StdErr refers to the standard output
device driver. A copy of StdErr is saved, and
StdErr is redirected to our predefined error file
Overcomes inability to redirect from the MS-DOS
command line

Th- ftirLtior returns TRUE if successful

19"

VAR ErrorNum : word;

BEGIN
ErrorNum := 0;
($1 -}

Assign (OutputFile, Std_Output_File_Temp);
Rewrite (OutPut File);
SavedStdOut Duplicate-Handle (StdOut, ErrorNum);
SavedStd Err := Duplicate-Handle (StdErr, ErrorNum);
Redirect-Handle (TextRec(Output_File).Handle, StdOut, ErrorNum);
Redirect Handle (TextRec(OutputFile).Handle, StdErr, ErrorNum);
Redirect AllOutput (ErrorNum = 0) AND (IOResult <>0);

END;

FUNCTION Restore All Output : boolean;

{ Restore program output and error output to the standard file handle

On entry, StdOut refers to our predefined file
StdOut is rereferenced to the standard output
device driver

Or entry, StdErr refers to our predefined file
StdErr is rereferenced to the output
device driver

The fLnctior, returns TRUE if successful

VAR
ErrorNum: word;

BEGIN
E-rorNum Q;
Redirect Handle (Saved Std Out, StdOut, ErrorNum);
IF CloseFileHandle (SavedStdOut, ErrorNum) THEN;
RedirectHandle (Saved Std Err, StdErr, ErrorNum);
IF CloseFile Handle (SavedStdErr, ErrorNum) THEN;
{$£I-)

Close (OutputFile);
IF fORestlt = 0 THEN BEGIN
ResponseFile := StdOutputFileTemp;
Restore AllOutput : ErrorNum = 0);
END

ELSE BEGIN
ResponseFile := NuLlStr;
Restore A',_OL!tput := FALSE;

194

END;
{$I+3

END;

PROCEDURE RestoreCRTAssignments;

{ Optional procedure to replace the standard files Input and Output
with textfile drivers in the CRT unit for speed. In turns out that
the CRT Unit does this on initialization, but disallows I/O
redirection by doing so
(Turbo Pascal Owner's Handbook, 1987, p. 377)

BEGIN
AssignCRT (Input);
Reset (Input);
AssignCRT (Output)
Rewrite (Output);

END;

BEGIN (* no initialization required *)
END.

195

APPENDIX W

SOURCE LISTING FOR UNIT SPAWN

SPAWN.PAS
(**** This is the unit that executes child processes under
(**** MS-DOS for the Slave computer. Included is a function ****

(**** to detect MS-DOS commands to be handled by the
(**** program rather than by a spawned copy of Command.com.
(**** The function is placed here to prevent circular unit
(**** dependencies while restricting visibility to unrelated ****

(**** units.

(**** Reference: Mefford, M.J., "Running Programs Painlessly ****

PC Magazine, v. 7, 16 February, 1988.

(**** Developed by Nelson Ard

(**** Last modification Sep 89

(* Modification history

8 Sep 89 - added PROMPT to the list of internal commands
24 Mar 90 - deleted Find-Environment (duplicated in Unit Support

UNIT Spawn;

INTERFACE

uses Datacom, Dos, Crt, Redirect, Support, ErrorCod, Miscpack;

TYPE
InternalCommand = (CD, CHDIR, COPI, DEL, DIR, ERASE, EQUIP, LS, MD,

MKDIR, PROMT, RD, REN, RENAME, RMDIR);

CONST
Command Name : Array [InternalCommand] OF String[6] =

('CD', 'CHDIR', 'COPY', 'DEL', 'DIR',
'ERASE', 'EQUIP', 'LS', 'MD', 'MKDIR', 'PROMPT',
'RD', 'REN', 'RENAME', 'RMDIR');

Coma_'ort : String[6] = '[COMI]';

196

VAR
Redirection : boolean; { set by the caller in the main program to

force all command program output to file
for remote display)

FUNCTION Match Command (VAR FileSpec : FileString;
VAR Command : InternalCommand) : boolean;

{ Matches the command in FileSpec against the above list of commands
processed internally by this program.

Input: FileSpec is the command/file name

Output: FileSpec is adjusted to contain the complete path, if any
Command is an enumerated type for internal commands
The function returns true if a command is matched

Procedure Run-Local (ProgramName, Cmdline : string;
VAR Response : string128;
VAR Restype : Response type;
VAR Error msg : string128;
VAR Er-type : Responsetype;
VAR Prompt : string128;

Batch : boolean);

{ Used to spawn a child process, program name in Command,
parameter-s in Command Tail. Program output, error responses,
and a follow on command line prompt as it would appear from a
]ccal command line processor are returned to the calling
program.

input: ProgramName is the command to be executed with path
Cmdline is the command tail for ProgramName
Batch lets Run Local know a batch file is to be executed

Output: Response is the output of the program
Restype is the type of Response (string, file, nothing)
ErrorMsg is the error output of the program
Errtype is the type of Error_Msg (string, file, nothing)
Prompt is a simulated command line prompt after program
e- ecut ion

1 C -

PROCEDURE Process intrinsic command (Command : Internal-command;
Commandtail : String128;
VAR Response : String128;
VAR Restype : Responsetype;
VAR Errormsg : String128;
VAR Errtype : Responsetype;
VAR Prompt : String128);

{ Used to execute a command normally processed internally by
command.com. The program name is found in Command,
parameters in CommandTail. Program output, error responses,
and a follow on command line prompt as it would appear from a
local command line processor are returned to the calling
program.

Input: Command is the command to be executed with path
Command-Tail is the command tail for Command

Output: Response is the output of the program
Restype is the type of Response (string, file, nothing)
ErrorMcsg is the error output of the program
Errtype is the type of ErrorMsg (string, file, nothing)
Prompt is a simulated command line prompt after program
e x e Cut 4i o

IMPLEMENTAT ION

FUNCTION Match Command VAR FileSpec : FileString;
VAR Command : Internal Command) : boolean;

{ Matches the command in FileSpec against the above list of commands
processed inte-naly by this program. Returns true if a command
is matched

InpLt: FileSpec is the command/file name

Output: FileSpec is adjusted to contain the complete path, if any
Command is an enumerated type for internal commands
The function retu-ns true if a command is matched

VAR
Found : booleen;
index : Internal Command;

198

BEGIN
Found := FALSE;
FOR index := CD TO RMDIR DO

IF (Pos (Command-Name[index], FileSpec) = 1) AND
(Length (Command-Name[index I) = Length (FileSpec)) THEN
BEGIN

Found := TRUE;
Command := index;

END;
MatchCommand := Found;

END;

Procedure Run Local (ProgramName, Cmdline : string;
VAR Response : string12B;
VAR Restype : Responsetype;

VAR Errormsg : string128;
VAR Errtype : Responsetype;
VAR Prompt : stringl28;

Batch : boolean);

{ Used to spawn a child process, program name in Command,
paramete-s in Command-Tail. Program output, error responses,
and a follow on command line prompt as it would appear from a
local command line processor are returned to the calling
program.

The use of a secondary copy of COMMAND.COM to run batch files is from
(Mefford, 1988, p. :27).

input: P-ogramName is the command to be executed with path
Cmdline is the command tail for ProgramName
Batch lets RunLocal know a batch file is to be executed

Output: Response ,s the output of the program
Restype is the type of Response (string, file, nothing)
ErrorMsg is the error output of the program
Errtype is the type of Error_Msg (string, file, nothing)
Prompt is a simulated command line prompt after program
ex ecut ion

begin
CheckBreak := TRUE;
IF Batch THEN BEGIN
Cmdline := /c + programname + Cmdline;
{ set up temporary command.com f
ProgramName := Find-Environment ('COMSPEC');

END;

199

GetDir(O, Prompt);
IF Redirection THEN BEGIN

Init RedirectUnit;
IF RedirectAllOutput THEN;

END;
Exec (Programname, Cmdline);
IF Redirection THEN BEGIN

IF RestoreAllOutput THEN;
RestoreCRT_Assignments;

END;
RSCleanup;
RSRestore (Current COM);
Restype := filetype;
Response = Redirect. Response_file;
Errtype := strng;
IF doserror <> 0 THEN BEGIN

ErrorMsg := ErrorCode [DosError];
END
else ErrorMsg
System.ChDir (Prompt);
Prompt := Prompt + ';

END;

CONST
SPACE : Char -

PROCEDURE Process intrinsic command (Command Internal-command;
Command-tail : Stringl28;
VAR Response : String128;
VAR Restype : Responsetype;
VAR Error_msg : String128;
VAR Errtype : Responsetype;
VAR Prompt : String128);

U Used to execute a command normally processed internally by
command.com. The program name is found in Command,
parameters in CommandTail. Program output, error responses,
and a follow on command line prompt as it would appear from a
local command line processor are returned to the calling
program.

Input: Command is the command to be executed with path
Command-Tail is the command tail for Command

Output: Response is the output of the program
Restype is the type of Response (string, file, nothing)
ErrorMsg is the error output of the program
Errtype is the type of ErrorMsg (string, fi!T, nothing)
Prompt is a simulated command line prompt after program
evecLtion I

200

CONST Current Drive : byte = 0;
Batchmode : boolean = TRUE;

VAR IOR : word;
Current Path : PathString;
List : EquipmentListType;

BEGIN
CASE Command OF

CD,
MD,
RD,
CHDIR,
MkDir,
Promt,
RmDir BEGIN

($I-"
Restype strng;
Errtype := strng;

CASE Command OF

CD,
ChDir :System.ChDir (Command tail);

MD,
MKDIR :System.MkDir (Commandtail);

PROMT : GetDir (CurrentDrive, Prompt);

RMDIR :System.RmDir (Command tail);

END;
IOR := IOResult;
IF IOR < THEN
Error msg := ...G + ErrorCode C IOR I

ELSE Errormsg :=
GetDir (Current_Drive, Prompt);
Response := '';

Prompt := Prompt + ">';

END;

201

DEL,
LS,
DIR,
REN,
COPI,
ERASE,
RENAME BEGIN

IF Command = LS THEN Command := DIR;
Run-Local (Command-Name E Command 3 + SPACE,

CommandTail,
Response, Restype, Errormsg, Errtype,
Prompt, BatchMode);

END;

EQUIP begin
CheckBreak := TRUE;
GetDir(O, Prompt);
IF Redirection THEN BEGIN

:nit Redirect Unit;
IF RedirectAllOutput THEN;

END;

Support.GetEquip (List);

Errtype := strng;

IF Redirection THEN BEGIN
IF RestoreAllOutput THEN;
RestoreCRTAssignments;
Restype filetype;
Response Redirect.Responsefile;
IF doserror 0 THEN
ErrorMsg ErrorCode I DosError]

else ErrorMsg
END

ELSE BEGIN
Restype strng;
Response 'Unable';
ErrorMsg

END;
System.ChDir (Prompt).
Prompt := Prompt +

END;

END; {CASE'
END;

BEGIN
Redirection := TRUE; t output is normally redirected to file I

end.

"0

APPENDIX X

SOURCE LISTING FOR UNIT SUPPORT

SUPPORT.PAS
(**** This is the unit that contains typed constants for use ****)
(**** by the main program Distrib to display window menus.
(**** In addition to general purpose routines, the unit also ****)
(**** contains the initialization procedure for the program. ****)

(**** References: Edwards, C. C., Advanced Techniques in Turbo ****)

Pascal, pp. 241 - 272, Sybex, Inc., 1987

Hall, W.V., "When Turbo Isn't Enough," in ****)

Shammas, N.C., The Turbo Pascal Toolbook, ****)
pp. 225 - 226, M & T Publishing, Inc., 1986. ****)

(**** Converted to a unit from program Turbocom.com in the
(**** first reference.

(**** Last modification Sep 89

UNIT Support;

Modification History
4 Aug 89 - Changed introductory maintenance screen

Deleted conversion messages from TP 4.0

INTERFACE

•******************** Start Edwards Excerpt ********************)

Uses -

Crt,
Dos,
General,
Datacom,
Wndow,
Printer;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex,, Inc. All rights reserved.

• ******************** Continue Edwards Excerpt *********************

203

(******************** Continue Edwards Excerpt ********************)

Const AltA = 30;
Alt B = 48;
Alt C = 46;
Alt D = 32;
Alt_E = 18;
Alt F = 3;
Alt _ = 34;

Alt H = 35;
AltI = 2
AltJ = 36;
AltK = 37;

AltL = 38;
Alt M = 50;
Alt N = 49;
Alt 0 =24-

Alt P = 25
Alt_0 = 16;
AltR = 19;
Alt S = 31;
AltT = 2?;

AltU = 22;
Alt V = 47;
Alt W = 17;
Alt X = 45;
Alt Y = 2I;
Alt_Z = 44;
Home = 71;
PgUp = 73,;
FgDn = 81;

Const NUL = V(0.
SOH = $01;

STX = $2;
ETX = $0Z;

EOT = $"4;
END = $05;
ACK = $'6,
BEL = $07;
BS = $108;

HT = $09;
LF = $(-A;
VT = $0B-

FF = $09

CR $OD
SO =$OE;
SI = $0F;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybe,-', Inc. All rights reserved.

********************* Cortinue Edwards Excerpt ********************)

204

(******************** Continue Edwards Excerpt ********************)

DLE = $10;

DC1 = $1I;
DC2 = $12;
DC3 = $13;

DC4 = $14;
NAK = $15;
SYN = $16;

ETB = $17;

CAN = $18;
EM = $19;

SUB = $IA;
ESC = $1B;
FS = SIC;
GS = $D;
RS = $1E;
US = W;

CEE = $43;

Type PhoneName = String[30];
PhoneRarams = Record

PhoneNumber:StringE20];

PhoneBaud:RS_Baud;
Phone Parity:RSParity;
PhoneLength:Byte;

PhoneStop:Byte;
PhoneEcho:Boolean;
End;

Phone_Record Record
Name:Fhone Name;

Phone-Data:FhoneParams;

End;
Phone-Names = Record

Length:Integer;
Names:Array EI..1) of Phone_Name;
End;

Phone_Data Array Cl.. 1 of Phone_Params;
CommuncationsType = Record

Speed:RSBaud;
Parity:RS_Parity;
Length:Byte;
Stop:Byte;
End;

String7 = String[j;
String4 = String[4];

* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission oV Sybex, Inc.
Copyright 1987 Sybe., Inc. All rights reserved.

********************* Continue Edwards Excerpt *********************

(****************Continue Edwards Excerpt**********)

TYPE EquipmentListType = RECORD
NbrOfPri nters,
Nbr Of Seri al ,
NbrOf Diskettes,
Initial Video,
RAMOnBoard :word;
IsGamePort,
IsDiskette :boolean;

END;
VAR List :EquipmentListType;

Var PhoneFile:File of Phone-Record;
(Moved from Dialing Directory

PhoneMenuL,
OldPhoneMenLL:"PhoneNames;
FhoneStuff,
Old-PhoneStuff: 'PhoneData;
Phone-Prefiix:String 1103;

Echo,Frint ,AsciiUpload ,AsciiDownload ,EndEmulator: Boolean;
Status-Line: StringE8O);
Emulator: StringE 10);
Ascii-File :File of Char;
Aii-FileName:StringE203;

Current-Pat h:Long_String;
Dialjelay: Integer;
Last_Dial: Integer;

Type DeinultType =Record MTe default parameters for Distrib!
Def ault-Name: String[303;
Def aultCom: Byte;
Defaul tModern:Byte;
DefaultF'hone:StringE20];
Defaul tSpeed:RSBaud;
Default_Par-ity:RSParity;
Default_Length:Byte;
DefaulitStop:Byte;
Def ault-Echo: Boolean;
Default-Textcolor:Byte;
Default-Menucolor: Byte;
De~auitBackcolor:Byte;
Default _Prefi>x:String[IO];
DefaultDelay: Integer;
End;

(*Reprinted with ex'tensive modifications from Advanced Techniques in
Turbo Pascal by Char-les Edwards, by permission of Sybex, Inc.
Copyright 190 Sybex, Inc. All rights reserved.

~~~ ~~ Cortinue Edwards Excerpt**********)

206



(**************** Continue Edwards Excerpt *********)

VAR Current : De'fault_.Type;

Const Defaults:Default_Type
(Default-Name: 'DISTRIE.CFG';
Def aultCon: 1;
DefaultModem: 2;
DefaultPhone: '555-1212';
Defaul tSpeed: B9600;
DefaultParity: None;
Defaul tLength: 8;
Def aultStop: 1;
Def ault-Echo: False;
DefaultTextcolor:Lighti-ay;
DefaultMenucolor:Green;
DefaultBackcolor: Black;
Default F'refix: 'ATDT9,,9,,';
DefaultDelay: 30);

OK_tlenu:Integer =1;

OKMsg:StringE) = 'OK '

Yes-No-Menu: Integer = 2;
Yes _No_rlsg:Array 1l1-23 of String[3)

'No 'I

'Yes')

Dial _Menu:Integer = 5;

Dial Msg:Array El. .5) of StringE63
'Dial I'I

'Repeat',
Modify',
'Delete',
'Add ' );

SpeedMenu: Integer = 10;
Speed_Msg:Array El..102 of StringE43

110',
150',

1200',
'2400'
'48uu'
'9600,

(*Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybe;, Inc. All rights reserved.
***'*************Contianue Edwards Ex;cerpt***********

207



******************* Continue Edwards Excerpt *********************

'19K2' ,
'38K4');

ParityMenu:Integer = 3;
ParityMsg:Array [1..3] of String[4] =

'None',
'Odd '1
'Even');

StopMenu:Integer = 2;
StopMsg:Array [1..2] of String[6] =

"0 Bits',
'I Bit ');

LengthMenu:Integer = 4;
LengthMsg:Array [1..4 of String[6] (

"5 Bits',
'6 Bits',
'7 Bits',
'S Bits');

ParamMenu:Integer = 14;
ParamMsg:Array 11..143 of String[16] =

'Name
'Phone Number
'Speed
'Word Length
'Parity
'Stop Bits
'Local Echo
'Comm Port
'Modem Port
'Dial Prefix
'Redial Delay
'Foreground Color',
'Background Color',
'Menu Color );

ColorMenu:Integer = 8;
Color Msg:Array [1..9 of String[7] =

'Black ,

'Blue
'Green ,

'Cyan

* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1967 Sybex, Inc. All rights reserved.

******************** Continue Edwards Excerpt ********************)

208



(****************Continue Edwards Excerpt**********)

'Red
'Magenta',
'Brown '

'White '

'Nothing');

Comm Menu: Integer = 2;
Comm -Msg:Array [1-.2] of String[5)

I COM 1',
tCOM 2');

Protocol -Menu: Integer = 2;
Frotocol-Msg:Array [1-.23 of StringE6J

'Ascii ',

'XModem');

Communications Menu: Integer = 21;
COMMUniCetions-Msg:AZrray [1- 211 of String[lOJ

300-E-7-1'

300-N-7-i'

1 200-E-7- 1

1 200-0-7-1

24,,-0-E-7-1'
2460-0-7-1
-2400-N-8-1
4800-E-7- 1
4800-0-7-1'

'9600-E-7-l'
9600-0-7-1,
9600-N-B-1'

Communications -Stuff:Array [1-.213 of Communications-Type
(Speed:B00C);Parity: Even; Length: 7;Stop: 1),
(Speed: 8300.; F'arity: Odd; Length: 7; Stop:1),
(Speed: B.AQ.,; Parity: None; Lengt h:8; Stop:1),
(Speed : 81200); Farity: Even; Length: 7;Stop :1),
(Speed: 81200C;F Parity: Odd; ,Length: 7; Stop: 1),

(*Reprinted with e-'tensive modifications from Advanced Techniques in
TL'rbo Pascal by Charles Edwards, by permission of Svbe ., In:.
Copyright 1987 Sybe::, Inc. A111 rights reserved.

****************** ContinUe EdwA-d=- E 'cerpt**********)



(**************** Continue Edw'ards Excerpt *********)

(Speed:Bl200;Parity:None;Length:8;Stop:l1),
(Speed:B21400;F'arity:Even;Length:7;Stop:1),
(Speed:B240C);Farity:Odd;Length:7;Stop: 1),
(Speed:BE4240C0;Parity:None;Length:8;Stop: 1),
(Speed:B4800;F'arity:Even;Length:7;Stop:1),
(Speed:B4800;Parity:Odd;Length:7;Stop:l),
(Speed : 480); Parity: None;Length:8; Stop:1),
(Speed: B9600; Parity: Even;Length: 7; Stop:1),
(Speed:B9600; Parity: Odd; Length: 7; Stop : ),
(Speed:B9600;Parity:None;Length:8;Stop: 1),
(Speed:Bl9200;Parity:Even;Length:7;Stop: 1),
(Speed:B19200;Parity;Odd;Length:7;Stop:l),
(Speed: 819200)C;PFar-ity:None;Length:B;Stop:l1),
(Speed:B3B.400O;Parity:Even;Length:7;Stop: 1),
(Speed: E35 4('Par ity:Odd;,Length:7;.Stop:l),
(Speed:B838400; Pa-i ty:None;Length:8;Stop:l));

HelpMenu:Integer = 17;
HelpMsa:A~rray 11-171 o; Stringc263

'Alt-A Change drive & path',
'Alt-P Send a Break signal',
'Alt-C- Update Config File '

'Alt-D Dialing Directory '

'A4t-E Local. echo toggle '

'Altr Change DC params
'Alt-,S Show disk directory',
'Alt-H Hang up phone
, Alt -L DOS Shell
*Ait-!, Activate Master
'A1t-F, Port Operations

'gl-PR XMODEM Get a file '

'Alt-S Activate Server

'Alt-- XMODEM Put a file '

'1 t-X (ESC) Exit emulator');
Help Tndex:ArraV, [1- 17] of Byte(

A I -A
*Ait S
A1t-c,
Alt -

AA'tE,
AltF9
Alt 0.

R* eprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1Q67 Sybex, Inc. All rights reserved.

******************Continue Edwards Ex..cerpt *********)

2 10C



(******************** Continue Edwards Excerpt *********************

Alt_H,
AltL,
Alt_M,
Alt_P,
PgDn,
Alt_R,
Alt_S,
PgUp,
Aft_T,
AltX);

Procedure Initialize;

Procedure ModifyEntry(I:Integer);

Procedure Save File(D:Boolean);

Procedure OK(S:String3);

Function Yes(S:String4):Boolean;

Procedure Build_Status_Line;

Function Chec[_Keyboard:Integer;

Function CheckAuxport:Char;

Function FindEnvironment(What:LongString):LongString;

Procedure NoFile(S:Long_String);

Procedure GetEquip ( VAR List : EquipmentListType );

IMPLEMENTATION

Procedure Initialize;

iThis procedure initializes the default values and reads the phone file)

Var Phone:PhoneRecord;
I:Integer;
Configuration : File;
Numread : word;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)

211



(******************** Continue Edwards Excerpt ********************)

Begin
Assign( Configuration, Defaults.DefaultName );

($I-)

Reset ( Configuration, Sizeof ( Defaults ) );
If IOResult > 0 then Current : Defaults
ELSE Begin

BlockRead ( Configuration, Current, Sizeof ( Defaults ),Numread);
Close ( Configuration );
If IOResult 0 then Current := Defaults;

End;

With Current do
Begin
ClrScr;
if not Mono then

Begin
SetColor(Default Textcolor);
SetBackground(DefaultBackcolor);
Menuground:=Default_Menucolor;
End;

PhonePrefix:=Default Prefix;
Echo:=Default Echo;
Dial Delay:=Default_Delay;
Print:=False;
AsciiUpload:=False;
AsciiDownload:=False;
GotoXY(27,1);
Textcolor(Default Textcolor+8);
Writeln('Remote Server Version 1.0');
GotoXY(31,2);
Write"°Maintenance Screen');
GotoXY(35,3);
Write('Dr. Kodres');
Textcolor(DefaultTextcolor);
WriteStatus(' Initializing',

DefaultTextcolor shl 4+DefaultBackcolor+$80);
End;

LastDial:=1;
Assign(PhoneFile,'DISTRIB.PHN');

{$i-:
Reset(PhoneFile);

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)

212



(*******~********Continue Edwards Excerpt**********)

If IOResitlt >0 then
B~egin (Create new file)
GetMem(Phone-Menu,Size~f (PhoneNames));
GetMem(PhoneStuff ,Size~f (PhoneParams));
Fhone-Menu-. Length: =1;
Phone-Menu^.NamesEl):='...To be provided...
Move (Defaults.Default..PhonePhofle_Stuff'"t1),Size~f (PhoneParams));

Phone. Name: =Phone-Menu- NamesE 1)
Phone. Phone-Data:=PhoneStuff't1)3;
Rewrite(PhoneFile);
Write(Phone-Fi le,Phone);
End

else
Begin SGet phone file,'
I:=FileSize(PhoneFile);
GetMem(Phone-MenuI*Size~f (Phone_Name)+2);
GetMem (PhoneStuff, I*Size~f (PhoneParams));
PhoneMn" eqt:1

$ R-' 3
While not Eo{ (PhoneFile) do

B~egin
Read (Phone_File ,Phone);
PhoneMenu-. Namest I):=Phone. Name;
PhoneStuf IJ:=Phone.Phone-Data;
I :1+I;
End;

CSR+
End;

Cl ose (Phone-File);
Witni Current do

Beg ir,

RS-Initialize (Default_Com,DefaultSpeed ,DefaultParity,
Default_Stop,DefautltLength);

End;
WriteStatus(U ',Current.Default_Backcolor shi 4 +

Current.DefaultTextcolor);
End; (Of :nitialize)'

Q* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybe<, Inc. All rights reserved.

*******~*~****** Continue Edwards Excerpt *********)

217



(******************** Continue Edwards Excerpt ********************)

Procedure Save File(D:Boolean);

,This procedure asks the user if he wants to save a changed
configuration
If so, it writes the appropriate file

Input D: True if saving default values
False if saving phone file

Var Configuration : File;
Phone:Phone Record;
J:Integer;

Begin
If OpenWindow(50,9,67,12,FlagBorders,'') = 0 then;
ClrScr;
If D then

Write('Save defaults?')
else

Write('Save this entry?');
If Yes('Save') then
Begin
ClrScr;
Write('Saving...');
If D then

Begin
Assign( Configuration, Defaults.DefaultName );

Rewrite ( Configuration, Sizeof ( Defaults ) );
If IOResult > 0 then

NoFile(Defaults.DefaultName)
else

Begin
Block:Write ( Configuration, Current, 1 );
Close ( Configuration );

End;
End

{$I+}
else

Begin
($R-.

Assign(Phone File,'DISTRIB.PHN');
Rewrite(PhoneFile);

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission o4 Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt *********************

214



(******************** Continue Edwards Excerpt ********************)

For J:=i to Phone MenuS.Length do
Begin
Phone. Name:=PhoneMenu-.Names[J];
Phone.PhoneData:=PhoneStuff^[J];
Write(PhoneFile,Phone);
End;

Close(PhoneFile);
$R+)

End;
End;

If Close Window then;
End; {of Save-File)

Procedure ModifyEntry(I:Integer);

tThis procedure modifies an entry in the phone list.

Input: I - If C> then the entry in the phone list to be modified
If = 0 then the default parameters

Var J,K: Integer;
StatusWindow,MenuWindow:Byte;
S:Long_String;

E:B oolean;

Procedure Update-Status;
Var J:Integer;

Begin

If GetWindow(StatusWindow) then;
For J:=l to ParamMenu do

Begin
GotoXY(ie,J);
ClrEol;
Case J of

1: If I 0 then
Write(Current. DefaultName)

else
Write(PhoneMenu".Names[I]);

2: If I = 0 then
Write(Current. DefaultPhone)

else
Write(PhoneStL'ff"'EI.PhoneNumber);

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1927 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)

-



(****************Continue Edwards Excerpt *********)

3:If I = 0 then
Write (SpeedMsg(Drd (Current.DefaultSpeed) +1])

else
Write(SpeedMsgEOrd (Phone_.StuffAEIJ.Phone,.seud)+1));

4: If I =0then
Write (LengthMsgtCurrent.Default_Length-4)

else
Write(LengthMsgEPhone_StuffAEIJ.PhoneLength-4J);

5: If I = 0then

Write (FarityMsg(Min (Ord (Current.DefaultParity)
+ 1,3)3)

else
Write(
ParityMsgEMin(Ord (Phone_StuffC[IJ.PhoneParity)
+0,0))

6: If 1 = () then
Write (StopMsgECurrent. Defaul tStop+)

else
Write(StopMsgEPhoneStuff[I).PhoneStop+13);

7: If I = C) then
Write (YesNoMsgEOrd (Current. Def aultEcho) +1])

else
Write(Yes_NoMsgtOrd(PhoneStuff'EI3.PhoneEcho)+13);

8: Write(CommMsgECurrent.DefaultComP);
5: Write (CommMsgECurrent.DefaultModemJ);
1.: Write(:urrert.DefaultPrefix);
11: Write(Current.DefaultDelay);

12: Write(Color_MsgECurrent.Default_Textcolor+13);
17: Write(ColorMsgECurrent.DefaultBackcol or+1J);
14: Write(ColorMsgfCurrent.DefaultMenucolor+l]);
End; {of Casee

End;
If Get-Window(rienuWindow) then;
End; to+f Update_Status)

Beg in
If I =0 then

If Mono then
Param-Menu: =10

else
Param-Menu:=13

(*Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1967 Sybex;, Inc. All rights reserved.

*****~***********Continue Edwards Excerpt**********)

216



(******************** Continue Edwards Excerpt ********************)

else
ParamMenu:=7;

If OpenWindow(1,2,50,3+ParamMenu,FlagBorders,
'Parameters') = 0 then;

StatusWindow:=ActiveWindow".ID;
ClrScr;
For J=1 to ParamMenu do

Begin
GotoXY(1,3)
Write(ParamMsg[J],':');
End;

If Open Window(52,2,70,3+ParamMenu,FlagBorders,
'Options') = 0 then;

MenuWindow:=ActiveWindow. ID;
ClrScr;
Repeat Begin

Update_Status;
J:=ProcesWindow Menu(Param Menu);
Case j of

0: ; {ESC...do nothing!
1: Begin AChange Name)

If OpenWindow(5,21,75,24,FlagBorders,
'Name') = 0 then;

ClrScr;
Write('Name: ');

Readln(S):
If Length(S) >0 then
If I = 0 then

Current. DefaultName:=S
else
PhoneMenu".Names[I]:=S

If CloseWindow then;
End;

2: Begin Phone number!

If OpenWindow(5,21,75,24,FlagBorders,
'Phone Number') = 0 then;

ClrScr;
Write('Phone Number: ');
Readln(S);
If Length(S) > 0 then
if I = 0 then
Current. DefaultPhone:=S

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
******************** Continue Edwards Excerpt ********************)

217



(******************** Continue Edwards Excerpt *********************

else
PhoneStuff^[I].PhoneNumber:=S;

If Close-Window then;
End;

3: Begin Speed)
If OpenWindow(69,5,75,14,FlagBorders,'Baud') 0

then;
ClrScr;
K:=ProcessWindowMenu(SpeedMenu);
If K > 0 then
If I = 0 then
Current.DefaultSpeed:=RSBaud(K-1)

else
PhoneStuff^[I].Phone Baud:=RS Baud(K-i);

If Close-Window then;
End;

4: Begin (Word Length)
If Open Window(69,6,77,11,FlagBorders,'Bits') 0
then;

ClrScr;
K:=ProcessWindowMenu(LengthMenu);

If K > 0 then
If I = 0 then
Current. Default-Length:=K+4

else
PhoneStuff^EI].Phone Length:=K+4;

If CLoseWindow then;
End;

5: Begin {Parity}
If OpenWindow(69,7,75,11,FlagBorders,

'Type') = 0 then;
ClrScr;
K:=ProcessWindowMenu(Parity Menu):
If K < 3 then K:=K-1;
If K >= 0 then

If I = 0 then
Current.DefaultParity:=RS_Parity(K)

else
PhoneStuff'[IJ.Phone Parity:=RSParity(K);

If Close-Window then;

End;
6: Begin (Stop bitsl

If OpenWindow(69,S,77,11,FlagBorders,
Bits') = 0 then;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1987 Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt ********************)

218



********************* Continue Edwards Excerpt *********************

ClrScr;
K:=ProcessWindow_Menu(StopMenu);
If K > 0 then

If I = 0 then
Current. DefaultStop:=K-1

else
PhoneStuff"°[I].Phone_Stop:=K-1;

If Close-Window then;
End;

7: Begin (Local echo!
B:=Yes('Echo');
If I = 0 then

Current.DefaultEcho:=B
else

Phone Stuff'[IJ.Phone_Echo:=B;
End;

8: Begin (Comm port)
If Open_Window(69,10,76,13,FlagBorders,

'Port') = 0 then;

ClrScr;
K:=ProcessWindowMenu(Comm Menu);
If K > 0 then

Current. DefaultCom:=K;
If CloseWindow then;
End;

5: Begin {Comm port)

If Open_Window(69,10,76,13,FlagBorders,
'Port') = 0 then;

ClrScr;
K:=ProcessWindowMenu(CommaMenu);
If K > 0 then

Current. Def aul tCom: =K;
Y4 Close-Window then;
End;

I0: Be:in Dial Prefix)
if OpenWindow(5,21,75,24,FlagBorders,

'Prefis<) = 0 then;
ClrScr;
Write('Prefix: '):
Readln(S);
If Length(S) > 0 then

Current. Default_Prefix:=S;
If Close-Window then;
End;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybe:, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)

219



(******************** Continue Edwards Excerpt ********************

11: Begin tDefault redial delay]
If Open_Window(5,21,75,24,Flag_Borders,

'Redial delay') = 0 then;
ClrScr;
Write('Redial delay (in seconds): ');

Readln(Current. DefaultDelay);
If Close-Window then;
End;

12, (Foreground color}
13, (Background color)
14: Begin (Menu color)

If OpenWindow(69,2+J,78,11+J,FlagBorders,
'Colors') = 0 then;

ClrScr;
K:=ProcessWindowMenu(Color_Menu);
If K > 0 then

Case J of
12: Current.DefaultTextcolor:=K-1;
13: Current.DefaultBackcolor:=K-1;
14: Current.DefaultMenucolor:=K-1;
End; (of Case)

If Close-Window then;
End;

End; .of Case!
End

Until J = 0;
If Close-Window then;
Save_Fle(I = 0);
If Close-Window then;

$RF+.

End; (of ModifyEntryJ

Procedure OK(S:String3);
?This procedure displays a window on the screen and waits for an
acknoledgement from the user

Input: S - The title to use for the window

Begin
If OpenWindow(60,5,64,7,FlagBorders,S) = 0 then;
If ProcessWindowMenu(OKMenu) = 0 then;
If Close-Window then;
End; (of OK)

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1967 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)

220



(******************** Continue Edwards Excerpt ********************)

Function Yes(S:String4):Boolean;
{This procedure prompts the user for a yes or no response

Input: S - The title to use for the window

Output: True if YES was selected

Begin
If Open Window(69,9,74,12,Flag Borders,S) = 0 then;
Yes:=Process WindowMenu(YesNoMenu) = 2;

If Close-Window then;

End; (of Yes}

Procedure BuildStatusLine;
(This procedure updates and displays the status line)

VAR Comport : string[1J;

Begin
Str ( CurrentCOM, Comport );
StatusLine:=' '+ (40 spaces)

'; (40 spaces}
Insert(Com Port: ',StatusLine,l);

Insert(Comport,StatusLine,11);
WITH Datacon.Comport I CurrentCOM I DO

BEGIN
Insert ( Speed Msg[ORD( Speed ) + 1 ], Status Line, 13);

Insert ( 'Baud , StatusLine, 18 );
Insert ( LergthMsg[ Length-4], StatusLine, 23 );

Insert ( FarityMsg[Min(ORD( Parity )+1, 3)], StatusLine, 30);
irsert ( StopMsq[ Stop + 1], StatusLine, 35 );

END;

If Echo then

Insert('Echo',Status_Line,47):
I Print then

Insert('F'rint',Statuts_Line,52 );

Insert'Home for Help',StatusLine,68);
WriteStatus(StatusLine,Foreground shl 4 + Background);

End; {of BuildStatusLine]

Function Check_Keyboard: Integer;

{This ;unction checks for keyboard input

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybe , Inc.
Copyright 1987 Sybe>', Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)



(******************** Continue Edwards Excerpt ********************)

Output: 0 if no key pressed
If normal key then high byte is 0 and low byte is value of key
If special key then low byte is 0 and high byte is value of key

)

Var Ch:Char;
Begin
If AsciiUpload then

Begin
If Eof(Ascii File) then

Begin
Close(AsciiFile);
Ascii_Upload:=False;
BuildStatusLine;
End

else
Begin
Read(Ascii File,Ch);
If Ch = Char(LF) then

Ch:=Char(NUL);
Checkeyboard:=Byte(Ch);
End

End
else if Keypressed then

Begin
Ch := ReadKey;
If (Ch = #0) then

Begin
Ch := ReadiKey;
CheckKeyboard:=Byte(Ch) shl 8;
End

else
CheckKeyboard:=Byte(Ch);

End
else

Check_Keyboard: =0;
End; {of Check_Keyboard}

Function Checi:_Auxport:Char;
(This function checks for input from the data communications port
If the appropriate global booleans are set, it will send the output
to the printer or to a disk file

Output: NUL if no character otherwise character received

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1987 Sybex, Inc. All rights reserved.

**************** Continue Edwards Excerpt *******************)

2 22



********************* Continue Edwards Excerpt ********************)

Var Ch:Char;
Begin
If RS232 Avail then

Begin
Ch := RS232 In;
If Ch <> Char(NUL) then

Begin
If Print then

Write(LST,Ch);
If AsciiDownload then

Wrfte(AsciiFile,Ch);
End;

Check Auxport:=Ch;
End

else
Check Auxport:=Char(NUL);

End; {of CheckAuxport)

Function FindEnvironment(What:Long String):Long String;

(This function searches the environment for a particular specifier of
the 4orm: ID=Text

Input: What - the ID to look for

OLtpUt: The Text of the environment string or empty if not found

Type Environment = Array [1..32767) of Char;
Var Environ:'Environment;

Environ Segment : word;
S:LongString;
I:Integer;

Begin
Erviro _Segment := MemW[PrefixSeg:$O02C];
Find Environment:='-'; Assume not foundl
What:=What+'=';
Environ:=PTR(EnvironSegment,O);

While Environ"I] <: .. @ Do
Beg i

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt *********************



(******************** Continue Edwards Excerpt ********************)

Repeat Begin
S:=S+Environ-'[I];
I:=I+1;
End

Until Environ^Ill =
If (Length(S) >= Length(What)) and

(Copy(S,1,Length(What)) = What) Then
FindEnvironment:=Copy(S,Length(What)+l,Length(S)-Length(What))

else
I:=1+1;

End;
End; tof FindEnvironment}

Procedure NoFile(S:LongString);

(This procedure opens a window and notifies the user that a file was
not found}
Begin
If Open Window(42,2,80,5,Flag Borders,'No file') = 0 then;
ClrScr;
Write('Cannot find file ',S);
OK('');
If Close Window then;
End; {of NoFile}

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

************************ End Edwards Excerpt ************************)

************************ Start Hall Excerpt *************************

Procedure GetEquip ( VAR List : EquipmentListType );

CONST Y INT : byte = $11;

VAR Regs : Dos.Registers;

BEGIN
With List DO BEGIN

With Regs DO BEGIN

(* The library GetEquip appears in The Turbo Pascal Toolboo: by Namir
C. Shammas (ed.) and has been reprinted with the permission of the
publisher M & T Books 1-800-533-4372. Minor modifications by Nelson
Ard.

************************* Continue Hall Excerpt *********************)

224



(************************ Continue Hall Excerpt *********************)
INTR ( SYSINT, Regs);
NbrOfPrinters := AH SHR 6;
IsGamePort (AH AND $10) > 1;
NbrOfSerial (AH AND $OE) SHR 1;
IsDiskette : (AL AND $01) = 1;
IF IsDiskette THEN
NbrOfDiskettes : (AL SHR 6) + 1

ELSE
NbrOfDiskettes (AL SHR 6) + 0;

InitialVideo := (AL AND $30)SHR 4;
CASE InitialVideo OF

1 : InitialVideo : 0;
2 : InitialVideo : 2;
3 : InitialVideo : 7;

END;
RAMOnBoard := ((AL AND $0C + 1) * 16;

END; t Regs }
Writeln;
Writeln ('No. of Printers = , NbrOfPrinters );
Writeln ('No. of Serial = ', NbrOfSerial );
Writeln ('No. of Diskettes = ', NbrOfDiskettes );
Writein ('InitialVideo = ", InitialVideo );

Wr-teln (WRAMOnBord =, RAMOnBoard );
Writein ('IsGamePort = , IsGamePort );

END;
END;

(Q The library GetEquip appears in The Turbo Pascal Toolbook by Namir
C. Shammas (ed.) and has been reprinted with the permission of the
publisher M & T Books 1-800-533-4372. Minor modifications by Nelson
Ard.

**************************** End Hall Excerpt ***********************)

BEGIN
END.

225



APPENI)I X Y

SOURCE LISTING FOR UNIT W4DOW

}

WNDOW.PAS
(**** This is a library of general purpose routines to
(**** display windows and control menu bars for selectors on ****)
(**** the IBM PC screen.

(**** Reference: Edwards, C. C., Advanced Techniques in Turbo ****)
Pascal, pp. 73-97, Sybex, Inc., 1987

(**** Modified slightly to make a Turbo Pascal 4.0 Unit

(**** Last Modification: Sep 89

UNIT Wndow;

INTERFACE

(******************** Start Edwards Excerpt ********************)

USES General, Crt, Dos;

r, l-

Type Window Link = 'WindowControlBlock;
Screen-Line = Array El..803 of WORD; C changed per

upgrade 2
Screen Array = Array[l..25] of Screen Line;
Screen Block = Arrayl..2000J of Integer;
Window Title = String[50);
WindowControlBlock = Record

X1,Y1,X2,Y2:Byte; (Window boundaries)
X,Y:Byte; (Cursor location)
ID:Byte;
Menujndex:Integer;
Menu TopY:Integer; (The top item in a menu).
Flag:Byte;
Foreground,Menuground:Byte;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt *********************

226



(******************** Continue Edwards Excerpt ********************)

Title:Window Title;
Back Link:WindowLink;
Screen Contents:Screen Block;
End; -'of Record Window_Control_Block}

Border_Type = (Single,Double);
LongString = STRING[255];

Const Foreground:Byte = LightGray; (Color within the windows)
Menuground:Byte = LightGray; (Color of the menu borders)
Background:Byte = Black; (Background color)

'These are the bit values of the field "Flag" in WindowControl Block)
Const FlagBorders = $01; (Borders on the window)

FlagGoto = $02; {Goto to this window is allowed)
FlagRelocate= $04; (Window may be relocated)
FlagClose = $08; (Window may be closed from main

menu)

Var W,
Active Window:WindowLink;
WindowCount:Integer;
Window fixed_Part:Integer;
Monc:Boolean;

-Forced to assign these variables on the same line - type mismatch }
Screen,
Screen NewScreenTemp:"'Screen Array;

Procedure SetColor(Color:Byte);
.[This procedure sets the forground color)s

Procedure SetBackground(Color:Byte);
{This procedure sets the background color).

Procedure GetDummyScreen;
(This procedure changes Screen to point to a dummy screen area on
the heap*

Procedure GetRealScreen;
[This procedure undoes the work of GetDummyScreen}

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Cop,'right 1987 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)

227



(******************** Continue Edwards Excerpt ********************)

Procedure BuildBorders(Lines:Border_Type);

{Purpose:

This procedure builds a border around a window.

Input:
Lines:Single = Single line border

Double = Double line border

Output:
None }-

Function OpenWindow(XI,YI,X2,Y2:Byte;Flag:Byte;
Name:WindowTitle):Byte;

'Purpose:
This function opens a window on the screen and places a border
around it.

Input:
X1,X2,Yl,Y2 are the coordinates of the window to be opened.
Flag is a bit mask of functions allowed in this window
Name is the title of the window

Output:
OpenWindow returns a byte as follows:
0 = Window opened OK
I = Invalid window coordinates
2 = Not enough memory

Function Close Window:Boolean;
-This function closes the currently active window.

Cutput:
Returns a True if there is no currently active window.

}

Function SaveWindow:WindowLink;
{This procedure saves off the current window & closes it

Output:
Pointer to the saved window

}

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)

228



(******************** Continue Edwards Excerpt ********************)

Function Restore Window(W:WindowLink):Boolean;
This procedure re-creates a saved window on the screen)

Function GetWindow(Which:Integer):Boolean;
(This procedure brings window "Which" to the top of the screen)

Function MoveWindow(X,Y:Integer):Boolean;
,This procedure moves the current window by "X,Y" locations"

Procedure WriteStatus(S:LongString;Attrib:Integer);
(This procedure writes to line 25 of the display

Input: S = String to be written
Attrib = Video attribute byte to use

Function Process Window Menu(Var Menu):Byte;
-This procedure will display and process a menu in the currently
active window.
The menu may be longer or shorter than the actual window.

Input: Menu - A pointer to a record with the following format:
Bytes 0-i: An integer giving the number of string

variables
Bytes 2-n: A series of String variables.

Outout: The function returns the index (1 relative) of the item
selected. A zero is returned if the ESC ley is pressed

Procedure Init Window Info;
(This procedure initializes all the of data used by the
windowing routines}

IMPLEMENTATION

Procedure SetColor(Color:Byte);
(This procedure sets the forground color

Input: Color = Color to set forground to 1
Begin
Foreground:=Color;
Textcolor(Color);
End; {of SetColor)

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 19S7 Sybex, Inc. All rights reserved.

****************~ Continue Edwards Excerpt ********************)

229



(******************** Continue Edwards Excerpt ********************)

Procedure SetBackground(Color:Byte);
'This procedure sets the background color

Input: Color = Color to set background to
J

Begin
Background:=Color;
Textbackground(Color);
End; (of SetBackground}

Procedure GetDummyScreen;
{This procedure changes Screen to point to a dummy screen area on
the heap)

Begin
If Screen New <> Nil then

Begin
Screen New':=Screen.;
Screen:=ScreenNew;
End;

End; (of Get-DummyScreen}

Frocedure GetRealScreen;
-This procedure undoes the work of GetDummyScreen"

Begin
if Screen New < Nil then

Begi n
Screen Temp":=Screen New';

Screen:=Screen_Temp;
End;

End; -of GetRealScreen}

Procedure BuildBorders(Lines:BorderType);

-Purpose:
This procedure builds a border around a window.

Input:
Lines:Single = Single line border

Double = Double line border

Output:
None I

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex:, Inc.
Copyright 1967 Sybex, Inc. All rights rese ved.

********************* Continue Edwards Excerpt ********************)

23



(****************Continue Edwards Excerpt**********)

Const UpperLeft:Array ro..ij of char = (#218,();
UpperRight:Array EO.-13 of Char = (#191,#187);
Lower Lpft:Array [O.-13 of Char = (#192,#200);
Lower -Right:Array [O.-13 of Char = (#217,#188);
Vertical:Array ro..i) of Char = (#179,#186);
Horizontal:Array V.).-11 of Char = (#196,#205);

Var Index:Byte Absolute Lines;
XX,YY, I:Byte;
MG,H,V: Integer;
Begin

With Active-Window^ do
Begin
If (Flag and FlagRelocate) =FlagRelocate then

UpperLeft 1 ):='J
else

Upper-Left[C13:=#201;
MG:=Menuground shl 8;
H:=MG+Byte (HoriZontalECIndex));
V:=M1G+Byte(Vertical [Index));
Screen-'CY1,X'J:=(MG)+Byte(UpperLeftCIndexJ);
Screer'E*.Y1,X2):=(MG)+Byte(UpperRightrLndex));
Screen"[Y2 , Xl):=(MC,)+Byte(Lower Left CIndex]):
Screen-"[Y2, X23:=(MG)+Bte(Lower-Right[IndexJ);
XX:=X1+1;
While XX -:: X2 do

Peg i r
If I KLength(Title) then

ScreenE[Y1,XX3:=(Foreground shi 8)+Byte(Title[I)
+ Index shl 11

else
Begin
FillWord(Screen'-EY1,XXJ,X2 -XX, H);
X X: =X2..
End :

XX:=XX+1;

End,
Fil'2Word(ScreenE"-Y2,X1+1J,X2 -XI-1,H);

(*Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyri ght 198- Sybex, Inc. All rights reserved.
*********~******Continu'e Edwards Excerpt**********)



(******************** Continue Edwards Excerpt ********************)

For YY:=YI+I to Y2-1 do
Begin
Screen^[YY,Xl]:=V;
Screen[YY,X2):=V;
End;

End; {of With!
End; (of Build_Borders}

Function OpenWindow(XI,YlX2,Y2:Byte;Flag:Byte;
Name:WindowTitle):Byte;

Purpose:
This function opens a window on the screen and places a border
around it.

Input:
Xl,X2,YI,Y2 are the coordinates of the window to be opened.
Flag is a bit mask of functions allowed in this window
Name is the title of the window

Output:
OpenWindow returns a byte as follows:
0 = Window opened OK
1 = invalid window coordinates
2 N t enough memory

Var BIzck:WindowLink;
LineLengthWindow_SazeI:Integer;
Y,Borders:Byte;

Begin
if Active-Window <> Nil then
If ActiveWindow'.Flag and Flag_Borders FlagBorders then
BuildBorders(Single);

LineLength:=(X2-X1+1):
Borders:=Byte(Flag and FlagBorders = Flag Borders);
Window_Size:=Line Length*(Y2-Yl+l)*2+Window_Fixed_Part;
if (XI K 1) or (X2 > 80) or (Y1 < 1) or (Y2 > 25) or

(X2-Xl < 2) or (Y2-Yl < 2) then
OpenWindow:=1

else if (YemAvail 4 WindowSize+l) and (MemAvail >= 0) then
Open Window: -2

else Begin
GetMem(Block,WindowSize);
BlocV.XI:=X1;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Comyright 19E7 Sybex. Inc. All rights reserved.

********************* Cotinue Edwards Excerpt ********************)

232



(**************** Continue Edwards Excerpt *********)

Block'. X2:=X2;
BlockV. Yl: =Y1
Block". Y2:=Y2;
Bloc0. X:=WhereX;
Block. Y:WhereY;
Bloc^. Title:=Name;
Sloc^. Flag: =Flag;
Block^.Menu-I ndex:0O;
Block^.MenuTopY:=O;
Block ̂ .Foreground:=Foreground+(Background shi 4);
Block .Menuground:=Menuground+(Background shi 4);

BlocV^.Back-Link:=Active-Window;
ActiveWindow:=Block;

For Y:=Y1 to Y2 Do
Begin
Move(Screen"[Y,X1),Block .Screen_ContentsElJ,

LineLength*2);
I:=1+Li ne-Length;
End;

Window
(X1-qBorders,Yl+Borders,X2-Borders,Max ((Y2-Borders) (Yl+Borders+l)));

If Borders =1 then
BuildBorders(Double);

GotoXY (1,1)
Window_Count:=Window_Count+l;
Block^. ID:=WindowCount;
CpenWi ndow: =O;
End;

End; {Of OpenWindow3

FPtnctjon CloseWindow:Boolean;
MiTh fu2nction closes the currently active window.

Oitput:
Returns a True if there is no currently active window.

Var Block:WindowLink;
LineLength,WindowSize, I: Inteqer;
Y,Borders: Byte;
Begin
If Active-Window = Nil then

Close-Window:=True

Q* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Syben, Inc.
:opyright 1987 Sybex, Inc. All rights reserved.

***************** Contin fue Edwards Excerpt **********



(**************** Conti1nue Edwards Excerpt *********)

else
Begin
Block: =Acti veWindow;
LineLength:=(BlockA.X2-BlockA.X1+1);
Window-Size:LineLength*(Bock".Y2-BlockV.Y1+l)*2

+ WindowFixedPart;

For Y:Block"MY to BlocW'.Y2 Do
Begin
Move(Block'.Screen_ContentstI),ScreenAEY,Block".X1),

Line_Length*2);
I:=I+LineLength;
End;

Active-Window:=Block'^.BackLink;
I+ Active-Window = Nil then

Window(1 ,l,80,25)
else with Active-Window" do

B~egin~
Borders:=Byte(Flag and FlagBorders = FlagBorders);

Window(Xl+Borders,Yl+Borders,X2-Borders,Max ((Y2-Borders),
(Y1+Borders+ 1)));

if Borders = 1 then
BuildBorders(Double);

SetCoior(Foreground and 7);
Set~ack.ground(Foreground shr 4);
End;

GotoXY(Block'.X,Biock".Y);
FreeMem(Block,WindowSlze);
Window-Count:=Window-Count-i;
CMoseWindow:=False;
End;

End; ~Of CloseWindow)-

7uncticrn Save-Window: WindowLi nk;
{This procedure saves off the current window &' closes it

Output:
Pointer to the saved window

Var W:WindowL jgj;

Beg in
W:=Active-Window;

(*Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

***~~**'-********Continue Edwards Excerpt**********)

234



(****************Continue Edwards Excerpt**********)

If OpenWindow(W.X,W.Y,W.X2,W.Y2,W'.Flag,W.Title) > C) then
Save-Window:=Nil

else
Begin
Active-Window". ID:=W".ID;
Active-Window ~.Menu-Index:=WA.Menu_Index;
ActiveWindow'.Menu-TopY:=W'.MenuTopY;
W:=Active-Window;
Active_Window:=W". ackLink;
1V CloseWindow then;
SaveWi ndow:=W;
End;

End; ~Of SaveWindowl

Function Restore-Window(W:Window_Link) :Boolean;
MTis procedure re-creates a saved window on the screen!

Begin
SetColor(V.Foreground and 7);
SetBackground (W. Foreground shr 4);
Vf OpenWindow(W.X1,W.Yl,W".X2,W'.Y2,W' .Flag,W' .Title) >0 then

Restore-Window: =True
el st

Begin
Active-Window'. ID:=WM D;
Actjve-Window'.Menu-Index:=W .MenuIndex;
Active-Window A.enu-TopY:=W .MenuTopY;
W".BackLink:=Active_Window;
ActiveWindow:=W;
Restore-Window:=Close_Window;
End-,

End; KOf RestoreWindow).

Our'ction GetWindow(Which:Integer):Boolean;
7This procedure brings window "Which" to the top of the screen.'

Yar Windo~wF: WindowLinQ
Function MoveWindows:Boolean;
Var W:Window-Link;

Begin
W: =SaveWindow;
If W = Nil then

Move-Windows:=True
Else

If W%11 QD Which then

(*Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1967 Sybex, Inc. All rights reserved.

***************** Continrue Edwards Excerpt***********



(******************** Continue Edwards Excerpt ********************)

Begin
If Move-Windows then

MoveWindows:=True
else

MoveWindows:=RestoreWindow(W);
End

else
Begin
WindowP:=W;
Move Windows:=False;
End;

End; (of Move_Windows}
Begin (Outer block of Get_Window)
GetWindow:=False;
WindowP:=ActiveWindow;
While (WindowP <> Nil) and (WindowP".ID <> Which) do

WindowP:=WindowP".Back_Lin;

If WindowP = Nil then
Get-Window:=True

else if ActiveWindowV.ID <> Which then
Begin
GetDummyScreen;
If MoveWindows then

GetWindow:=True
else

GetWindow:=Restore Window(WindowP);
Get_Real_Screen;
End;

End; (of GetWindow)

Function MoveWindow(X,Y:Integer):Boolean;
?This procedure moves the current window by "X,Y" locations)
Var W:WindowLink;

XC,YC,LineLength,YI,Borders:Byte;
I:Integer;
Begin
W:=ActiveWindow;
If W = Nil then

MoveWindow:=True
else if (W'.Xl+X < 1) or (W.YI+Y < 1) or (W.X2+X > 80)

or (W".Y2+Y > 24)
then MoveWindow:=True

else Begin
XC:=WhereX;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)

236



(**************** Continue Edwards Excerpt *********)

YC:=WhereY;
Line-Length:=W".X2-W".X1+1;

For YI:=W".Yl to W".Y do
Begin
Exchange(W".ScreenContentsEI3,Screen/tYI,WA.Xl),

I ineLength*2);
I:=I+LineLength;
End;

W.Yl:=W.Y+Y;
W. X2:=W. MY+X

For YI:=W".Yl to W.Y2 do
Beg in
Exchange (W-ScreenContentsEl) ,ScreenECYI,W Xl),

LineLength*2);
I :1+Line-Length;
End;

Eorders:=yte(W.Flag and FlagBorders = FlagBorders);
Window(W .Xl+Borders,W'.Yl+Borders,W-.X2-Borders,

?az<(W.Y2-Borders',(W .Y+Bordersfl)));
GotoXY(XC,YC);
End;

End; TOf Move,1Window.

Procedure WriteStatus(S:LorgString;Attrib:Integer);
jThjS P-OCEdure writes to line 25 of the display

input: 6 String to be written
Attrib = Video attribute byte to use

Var X:Eyte;
B~eg i

For 0=1 tc BC) do
IX X A: Length(S) then
Screen425,X):=ttribQ2'C)

else
Screen'E25,XJ:=Attrib+Byte(SEX)

End; (Of WiteStatus}

(*Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by perm~ission of Sybe:, Inc.
Copz'- 1: 1927 Sybe.; Inc. All rights reserved.

***************** Continue Edwards E:.erpt**********.



********************* Continue Edwards Excerpt *********************

Function K eyin (Checkit:Boolean):Integer;
This procedure reads in a key from the keyboard.

Input: Checkit = True if we should call SpecialProcessing to check it
= False if we should not call Special Processing

Output: The value of the key read
Function keys are returned with a 0 in the low byte and the
extended scan code in the high byte

Var C:Char;
Key:Integer;
Done: Boolean;
Begin
Done:=True;
Repeat

Begin
Repeat until KeyPressed;

C := ReadKey;
If (C = #0) then

Begin
C : ReEd'ev;
Key:-Byte) shi 8;

En

Key: =EByte(C ;
If Checrit then

Done:=TRUE;
End

until Done;

Veyl n: =Key;
End; {of Keyirn:

Function FrocessW-indowMenu(Var Menu):Byte;
.{This procedure will display and process a menu in the currently
active window.
The menu may be longer or shorter than the actual window.

Input: Menu - A pointer to a record with the following format:
Bytes 0-1: An integer giving the number of string

variables
Bytes 2-n: A series of String variables.

(* Reprinted with extensive modifications from Advanced Techniques in
TLrbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 198 Sybe., Inc. All rights reserved.

******************* Cortinue Edwards Excerpt ********************)

238



(******************** Continue Edwards Excerpt ********************)

Output: The function returns the index (1 relative) of the item
selected. A zero is returned if the ESC key is pressed

Var MenuCount:-Integer;
Menu_Item:LongString;
Menu Offset:Integer Absolute Menu_Item;
WindowSize,I,J,Key:Integer;
Done:Boolean;

Procedure GoUp;
{This procedure moves up to the prior item in the menu!
Begin
MenuOffset:=MenuOffset-Length(Menu_Item)-1;
I:=I-1;
If I < ActiveWindow".MenuTopY then

Begin
GotoXY(1,I);
InsLine;
Write(MenuItem");
ActiveWindow".Menu_TopY:=I;
End-

End; tof GoUp}
Procedure GoDown;
CThis procedure moves down to the next item in the menu,
Begin
MenuOffset:=Menu Offset+Length(MenuItem")+l;
I:=I+I;
if I = ActiveWindow°".MenuTopY+WindowSize then

Begin
GotoXY(1,1);
DelLinc"
GotoXY(K,WindowSize);
Write(Menu_Item);
ActiveWindow .MenuTopY:=ActiveWindow".MenuTopY+l:
End;

End; tof GoUp;
Procedure GoHome;
(This procedure positions the cursor in the home position)
Begin
While I A I do

GoUp;
End; (of GoHome!
Procedure GoEnd;
TThis procedure positions the cursor in the end positior)
Begin

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1997 Sybex, Inc. All rights reserved.

******************** Continue Edwards Excerpt ********************

209



(**************** Continue Edwards Excerpt***4******)

While I < Menu-Count^ do
GoDown;

End; (Of GoEnd)
Procedure SetHi ghl ights;

Begin
With ActiveWindow- do

Begin
If I = Menu-Index then

Beg in
Te>xtcolor(Foreground shr 4);
Textbackground (Foreground and 7);
End

else if I = Abs(Menu-Index) then
Begin
Textcolor (Blue);
TextBackground (Black);
End

else
Begin
Textcolor(Foreground and 7);
TextBackground (Foreground shr 4);
End;

End;
End; Tof SetHighlightsl)

Beg i r
MenuCount:=Addr (Menu);
Menu-Item:=Ptr (Seg (Menu) ,Ofs (Menu) +2);
Window-Size:=Active-Window'.Y2-Active-Window'.Yl-l;
If Active-Window". Menu-Index <= ) then

Begin
ClrScr;
ActiveWindow^.MenuTopY:=1;
For I:=1 to Min(MenuCount-,WindowSize) do

Begin
Gotoxy (.1 I);
SetHighlights;
Write(Menu_ Item-);
Menu Of fset:=MenuOf fset+Length (Menu ltem ) +1;
End;

If Window-Size =I then
BuildBorders(Double);

End;
Menu-Item: =Ptr (Seg (Menu) ,Ofs (Menu) +2);

(*Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

*~***~***********Continue Edwards Excerpt **********

240



(****************Continue Edwards Excerpt *********)

For I:=1 to ActiveWindow^.Menu_ Index-I do
Menu-Of fset: =MenuOff set+Length (MenuItem") +1;

I:=Max~(ActiveWindow^.Menu-Index,l);
ActiveWindowA.Menu-lndex:=Min(ActiveWindow'.MenuIndex,O);
Done:=False;
WriteStatus('Choose item using the arrow keys '^X' & 'Y

+ #179' Press ESC to abort '+
#179' Press '"0#217' when done',Foreground shi 4);

Repeat Begin
TextColor(Active_Window".Foreground shr 4);
TextBackground (ActiveWindow".Foreground and 7);
GotoXY(1, I-Active_Window ~.MenuTopY+1);
Write (MenuItem');
Set_Highlights;
GotoXYU ,I-ActiveWindow-.MenuTopY+1);
CursorSize(Cursor_ Invisible,Mono);
Key: =Keyin (True);
Write(Menu_ItemA);
Case Lo(Key) of

0: Case Hi (Key) of
72: If I 1 then

SoUp
else

GoEnd;
80: If I < Menu-Count" then

GoDown
else

GoHome;
71: For NO1 to Window-Size do

If I >1 then
SoUp;

81: For DO= to Window-Size do
if I < Menu-Count" then

GoDown;
71: GoHome;
79: GoEnd;
Else Beep (1(X));
End; (Of case!

1z: Begin
Frocess-Wi ndowMenu:=I;
Done:=True;
End;

A* Feprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, inc.
Copyright 1987 Sybex, Inc. All rights reserved.

***************** Continue Edwards Excerpt***********

241



(******************** Continue Edwards Excerpt *********************

27: Begin
Process WindowMenu:=O;
Done:=True;
End;

Else Beep(100);
End; (of casel

End
Until Done;
With ActiveWindow" do

Begin
Menu_ Index:=I;
TextColor(Foreground and 7);
TextBackground(Foreground shr 4);
End;

Write Status('',Foreground);
CursorSize(CursorSmall,Mono);
End; (of ProcessWindowMenu]-

Procedure Init Window Info;
{This procedure initializes all the of data used by the
windowing routines)

Var Regs:Registers;
Begin
intr($11,Regs);

Mono:=(Lo(Regs.AX) and $30) =30;
If Mono then

Screen:=Ptr($B000,O)
else

Screen:=Ptr($BBOC,O);
ActiveWindow:=Nil:
ScreenTemp:=Screen;
Window FixedPart:=Sizeof(WindowControlBlock)

- Sizeof (Screen Block);
If (MemAvail < 0) or (MemAvail * Sizeof(Screen Array)+100) then
( Changed per upgrade to accomodate TP 4.0 MemAvail }

New(ScreenNew)
else

ScreenNew:=Nil;
WindowCount:=O;
End; {of InitWindowInfo)

BEGIN
END.

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********************* End Edwards Excerpt ********************)

242



APPENDIX Z

SOLRCE LISTIN6 FOR UNIT X'ODM

XMODM.PAS

(**** This is the unit that abstracts all packet and file
(**** transfers for the Xmodem protocol. The interface is
(**** derived from the Turbocom.com program in the first
(**** reference, however, the implementation has been rebuilt ****)

(**** for command and data transfer from the second source.

(**** References: Edwards, C. C., Advanced Techniques in Turbo ****)
Pascal, pp. 220-275, Sybex, Inc., 1987

Krantz, D., "Christensen Protocols in C," ****)
Dr. Dobb's Journal, v. 10, no. 6, pp. 66-89, ****)
June 1985.

(**** Modi'ied by Nelson Ard

(**** Last Modification: Sep 89

UNIT Xmodm;

I NTERPACE

USES Miscpack, General, Wndow, Datacom, Support, Crt;

{ 13 Jun 89 - changed status variable to enumerated data type for
clarity changed SendRecord, Receive-Record to
independant procedures (callable by outside processes)

15 Jun 89 - eliminated global variables, moved formal declarations
for command packet building blocks into Interface
section

22 Jul 80 - added Respondbyfile

28 Jul 8q - added a variable to control transfer monitor windows

12 ALug 89 - extended variable Monitor transfers to include the
Update status and the monitor window

24 Auc 8 - geted ReadAu and WriteAuv to show only data characters
cha ged Resp-n._by fie to function to obtain status

2 4



broke long resync problem with CommandXfer syncing on
CAN character from master and resetting after 10 block
errors }

(******************** Start Edwards Excerpt ********************

CONST
CEE = $43;

TYPE
Result = ( Rx_sync, { Waiting for sync

Rxdone, { completed
RxACK, { Good Rx, within retrymax }
Rx_old ACK, ( Good Rx, old block }
R EOT, { Good Rx, EDT char }
Rx _junk, { Garbage on the line I
R-:timeout, { nothing heard }
R,._errors, { Bad Rx, retrymax exceeded }
R' lost-block4 { Bad Rx, out of sync 3
RxNA,{ Bad Rx, NAK sent }
RxCAN, { Good Rx, CAN char J
R% _keypressed, { Keypressed detected }
Tx sync, Waiting for sync }
Tx done, { completed }

{ Good Tx, within retrymax 3
TCEEsync, { Good Tx, CRC sync rxd }
T"' En2T, " Good Rx, EDT char }
Tx timeout, C nothing heard }
Tx_errors, { Bad Tx, retrymax exceeded I

NAK C Good Tx, cksum sync rxd }
TvNAC Bad Tx, NAK received }
T% CAN' t Bad Rx, CAN char received }
"'_jun, t Trash on the receive line 3
Tx keypressed ); Keypressed detected }

VAR SuppressECT,
Suppress CAN,
MonitorTransfers boolean;

PUNCTION Sync-Receive seconds : integer;
synccharacter : char ) result;

(* Reprinted with extensive modific,-ions from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)

244



(**************~* Continue Edwards Excerpt**********)

FUNCTION Receive-Record ( VAR Buf : Buffer; blocksize : word;
seconds : word; expected-block word;

VAR errors :byte ):result;

FUNCTION Sync-Send ( seconds :word : result;

* FUNCTION SendRecord ( VAR Buf : Buffer; blocksize : word;
seconds word; block : byte;

VAR errors :byte ) result;
PROCEDURE SendEDT ( VAR status : result )

PROCEDURE SendCAN;

PROCEDURE TransferFile ( Send :Boolean )

Function CommandXfer(Send:Boolean; VAR buf buffer;
BlockSize:Integer) : result;

FUNCTION Respond by file (Response pathstring ) result;

Procedure SendString ( S String )

Function Get-response ( BlockSize:Integer )result;

ProcEdL'-E string to-buf ( s .string; VAR buf :buffer )

'Converts a strino into an Xmodem buffer 1

FLUrctio- b~f -t ostring VAR bL~f :buffer ) stringl2B:

.' Con-verts an Xmodem buffer into a string

1 tIP _EMENTAT 110N

C~JTtimeout = 256'.
Retr>'ms.. 10;

TYPE
Xmodem Frame ARRAY [1- 41 of Char;

(*Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********~*****~** Continue Edwards Excerpt**********)

24 5



(******************** Continue Edwards Excerpt ********************)

Const Xmodem Status:Array [Rxsync..Txkeypressed) of String[17 =(
'Rxsync { Waiting for sync }
'Rx done , { completed }

'RxACK { Good Rx, within retrymax }

'Rx oldACK , { Good Rx, old block }
'Rx_EOT , { Good Rx, EDT char

'Rx_junk C Garbage on the line }

'Rx,_timeout f nothing heard I
"Rx errors , { Bad Rx, retrymax exceeded 3
'Rxlost block , { Bad Rx, out of sync }
'RxNAK , t Bad Rx, NAK sent
'RxCAN t Good Rx, CAN char
'Rx_keypressed ( { Keypressed detected I
'Tx_sync C Waiting for sync }
'Tx done completed }

'Tx_ACK , { Good Tx, within retrymax }
'Tx_CEEsync { Good Tx, CRC sync rxd
'Tx _EOT , { Good Rx, EDT char J
'Tx timeout nothing heard j
'Tx.errors , { Bad Tx, retrymax exceeded }
'Tx NAK sync , { Good Tx, cksum sync rxd }
T TNA , { Bad Tx, NAK received j

'Tx_ CAN , { Bad Rx, CAN char received '
_,{ Trash on the receive line '

'T; keypressed );{ Keypressed detected

VAP
CFC F oclean;
XferFile : File;
Status_D, Monitor ID:Byte;
Mo'itor File: File of Char;

LUffr buffer;
monitor-gate : boolean;

FRCCEDLE string to buf ( s string; VAR bur: buffer );

{ Converts a string into an Xmodem buffer I

VAR index : byte;

BEG I N
-OR index := I TO Length ( s ) DO

buf r index I := s C index I;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Ccpyight 198 Sybex, Inc. All rights reserved.
******************* ~ Continue Edwards Excerpt ********************)

246



(******************** Continue Edwards Excerpt ********************)

FOR index := Length ( s ) + 1 TO 128 DO

buf C index ] := Char NUL );
END;

FUNCTION buf tostring ( VAR buf : buffer ) string128;

{ Converts an Xmodem buffer into a string }

CONST SPACE =
TILDE =

VAR s : string128;

index byte;

BEGIN

FOR index := I TO 128 DO

IF buf C index 3 IN I SPACE .. TILDE 3 THEN

s := s + buf [index]
ELSE s := s + SPACE;

bf_ to stino s;
END;

PUNCTION ReadAux seconds : word ) word;

VAR : word;
Ch char;

BEG I N

I:=seconds * 1000;
While ((not RS2 2 Avail) and (I > 0) AND (NOT Keypressed)) do BEGIN

Delay();

DEC(i);

End;
If RS2:,-.Avail ther BEGIN

Ch RS2 2 In;
If ( MonitorID > 0 ) AND ( monitor gate ) then Begin

TextColor (Foreground);
TetBackgro_ nd (Background);
Case Byte(Ch) of

NUL,?EL,BS,LF : C suppress };

$20 .. $FF : Write ( Ch );
CR : Writeln;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1987 Sybe', Inc. All rights reserved.

******************* Continue Edwards Excerpt ********************)

247



(******************** Continue Edwards Excerpt ********************)

End; tof Case}
Write(Monitor-File,Ch);

End;
ReadAux := ORD(Ch);
End

else

ReadAux Timeout;
End; {of ReadAux}

Procedure WriteAux(Ch:Char);

Begin
RS232 Out(Ch);

If ( MonitorID > 0 ) AND ( monitorgate ) then

Begin
TextColor(Background);

TextBackground(Foreground);

Case Byte(Ch) of
NUL,BELBS,LF : { suppress };
$20 .. $FF : Write ( Ch );
CF : Writeln;

End; {of Case!
Write(MonitorFile,Ch);

End; fbegin:

End; to WriteAuxK

Procedire Send String ( S : String );

VAR inde4 : word;

BESIN

IF Length ( S ) 0 THEN BEGIN
FOR index := 1 TO Length ( S ) DO

RS232 Out( S E index 3
RS232 Oat ( Char (CR) );

END;

END;

FUNCTION ReceiveRecord ( VAR Buf : Buffer; tlocksize word;

seconds word; expected block word;
VAR errors byte ) result;

(* Reprintet with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Syben, Inc. All rights reserved.

*4*********~********* Continue Edwards Excerpt ********************)

248



(******************** Continue Edwards Excerpt ********************)

VAR
temp : word;
I : word;
checksum : byte;
Frame : Xmodem-frame;
Ch : Char;

BEGIN
Ch: =Char (NUL);
errors := 0;

CASE ReadAux ( seconds ) OF

SOH : BEGIN
monitorgate := false; { turn off monitor display

For I:=2 to 3 do
Frame EI] Char (Lo( ReadAux( seconds )));

Checksum: =0;
monitorgate := true; { turn on monitor display }
For I:=1 to BlockSize do

Begin
BYr [I := Char(Lo ( ReadAux ()));
Checksum:= (Byte (Checksum)+Byte(Buf[I])) MOD 256;

End;
monitor gate := false; { turn off monitor display 2
Frame E4] := Char(Lo(ReadAuxi 1 )));

if (Bvte(Freme2]Y Q (255-Byte(FrameE3]))) or
?Char(Cnecksum) 0 FrameE4]} then

Begirn Error on datacomm line.'
INC (Errors.;
Wri teA,_Y (har (NAK)) ;

ReceiveRecord := RxNAK;
End

else if Byte(Frame[2]) = expected block then
Begin {Block numbers match
Errors: =';
ReceiveRecord :- Rx_ACK;

WriteAux (Char (ACK));
End

else if Byte(FrameE2]) = (expected block-i) then begin
ReceiveRecord := Rx oldACK;
INC ( Errors );
WriteAux(Char(ACK)) (Old block resent...ACK it
END

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo F'ascal bv Charles Edwards, by permission of Sybex, Inc.
*o0pyight QSQ7 Sybe., Inc. All rights reserved.

**********~~******* Contin , Edwards Excerpt *******************)



(****************Continue Edwards Excerpt**********)

else
Begin ,'We lost a block)

Receive-Record := Rx lost block;
End;

End; (SO)'

CAN : Receive-record Rx-CAN;

Timeout :Receive-record :=Rx-timeout;

EOT :Receive-record Rx-EOT;

else Receive-record :=Rx-junk;

END; f, OF CASE Ir

END;, MeceiveRecord)

PROCEDURE Get Buffer ( VAR buf : buffer; blocksize :word )

VAR
Numread :word:
indev word;

BE G I N
BlockRead(XferFile. buf, blocksi-Ze, Numread);
IF Numread Kblocksize THEN
For inde- NL'M-ead + 1 to blocksize DO

BLflinde,.: := CHAR (ORD(O) :

FUNCTION SendRecord , VAR Suf+ Buffer; blocksize word;
seconds :word: block byte-,

VAR errors :byte ) result;

VAR
Numread,
Numwritter : word:
i nder : word;
check~S~Ur bylte,
Ch :CHAR;

(*Re~rinted with e!,tensive modifications from Advanced Techniques in
Turbo Fascs! by Charles Edwards, by permission of Sybe', Inc.
Copyright 195E Sybe ,, Inc. All, rights reserved.

***********~*~**~Conti.-ue Edwards Excerpt**********)

UCY



(**************** Continue Edw~ards Excerpt**********)

ending char :char;
quit boolean;

BEG IN
monitor gate :=false; f turn off monitor display

Errors :=0;
checksum 0;
FOR index 1 to blocksize DO
checksum :=(checksum + ORD ( Buf [index] )) MOD 256;

Begin
IF blocksize = 128 THEN Write~ux ( Char ( SOH
ELSE Write~ux ( Char ( SOH );

Write~ux ( Char ( Block ) );
Write~ux ( Char ( 255-Block ))
monitor gate :=true; t turn on monitor display 1
For index :=1 to blocksize DO

WriteAul>'(BufEindex J);
monitor gate := false; ( turn off monitor display 1
W'rite~ux ( Char ( checksum))
PurgeLine;
CASE Reade~u' seconds ) OF

AKSendRecord TxACK;

NAKSend-Record =T>x NAK

CAsN Send-_Record TCAN;

Timeout Send-Record Tx timeout;

ELSE Send-Record := Tx 3Lunk

End; Wcas&~

IF Keypressed THEN Send Record Tx .:eypressed:
END; trepeati

End.

PWN2710N SyncReceive ( seconds :integer;
sync character :char ) result;

(*Reprinted with eytensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
:Oy-ight 1967 Sybey, Inc. All rights r-eserved.

**********4******Continue Edwar-ds Ey'cerpt * * * *~

251



********************* Continue Edwards Excerpt *********************

VAR
I,
tries : integer;

BEGIN
PurgeLine;
WriteAux(sync character); I try immediately }
tries := TRUNC ( seconds /5 + 0.6 ); {convert seconds to cycles -
WHILE ((not RS232_Avail) and ( tries > 0)

and ( NOT keypressed )) do BEGIN
WriteAux(synccharacter);
I := 1000;
While ((not RS232 Avail) and (I > 0 ) and ( NOT keypressed )) do

Begin;
Delay( 5 ); { 10 ms * 1000 cycles = 10 seconds 3
DEC ( I );

End;
DEC ( tries );

END;
IF Keypressed THEN
Sync_Receive := Rxkeypressed

ELSE IF RES72_Avail THEN BEGIN
IF RS212_peek <> Char ( CAN ) THEN Sync_Receive Rxsync
ELSE SyncReceive := RxCAN;

END
ELSE SyncReceive := Rx timeout;

END;

PUNCTION Sync_5end ( seconds : word ) result;

VAR
quit : boolean;

Begir
quit := FALSE;
Repeat
FurgeLine;

A* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Svbe , Inc.
Copyright 1987 Sybey. Inc. All rights reserved.

**~**************** Continue Edwards Excerpt ********************)

252



********************* Continue Edwards Excerpt ********************)

CASE ReadAux ( seconds ) OF
CEE BEGIN t checksum handshake }

CRC := TRUE;
SyncSend := TxCEE sync;
quit := TRUE;

END;

NAK : BEGIN ( checksum handshake }
CRC FALSE;
SyncSend := Tx NAK sync;
quit := TRUE;

END;

Timeout BEGIN

SyncSend := Tx timeout;
quit := TRUE;

END;

CAN BEGIN
Sync send := Tx CAN;
quit := true;

END;

ELSE BE3IN
Sync send Txjunk; (Garbage on the line,

END;
End; {CASE }

UNTIL ( quit ) OR Keypressed;
IF Keypressed THEN SyncSend Tx Keypressed;

END-

PROCEDURE Send EOT ( VAR status result );

VAR e-rors : byte;

BE GIN

IF ( Suppress_EDT ) THEN
status := Txdone

ELSE BEGIN
Errors
REPEAT

WriteAux ( Char ( EDT ));
INC (Errors);

UNTIL (ReadAux ( 10 ) = ORD ( ACK )) OR ( Errors = Retrymax );

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********************* Cont:nue Edwards Excerpt *******************)



(******************** Continue Edwards Excerpt ********************)

IF Errors = Retrymax THEN
Status := Tx timeout t timeout on EDT I

ELSE status := Txdone;
END

END;

PROCEDURE SendCAN;

BEGIN
IF NOT Suppress_CAN THEN BEGIN

WriteAux ( char (CAN));
WriteAux ( char (CAN));

END;
END;

Function XmodemXfer(Send:Boolean; BlockSize:Integer) : result;
(This procedure performs an Xmodem file transfer

Input: Send - True to send a file
False to receive a file

BlocI:SizE - The block size to use for the file transfer }

VAR endino char : char;
X~erType:Strino[6];

done,

Abort: Bool ean;

Stat,s : result;
Ch : Char;
Error ,
Settings,
Block Count • byte;
I,
block,
. nde%.,

BI oci--s,
Numread,
Error Count : word;
ByteCount: Longint;

bu+ : buffer;

Frocedure UpdateStatuS;

Var I:Integer;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1987 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)

254



(******************** Continue Edwards Excerpt *********************

Begin
If Monitor ID > 0 then begin

If Get Window(Status_ ID) then;
For I:=2 to 5 do Begin

GotoXY(11,I);
ClrEol;

Case I of

2: Write(Xmodem Status[Status]);

3: Write(Blocks);
4: Write(Byte Count);
5: Write(Error Count);

End; tof Casel
End;

If GetWindow(Monitor ID) then;

END;

End; {of Update_Status)

Begin
If Monitor-Transfers THEN

Begin

If OpenWindow(1,8,80,24,Flag_Borders,'Monitor Window') = 0 then;

ClrScr;
Writeln('Opening monitor file');
MonitorID:=ActiveWindow.ID;

Assign(Monitor File,'MONITOR.DAT');

Rewrite(Monitor_File);
End

else

Begir
Monitor_ID:=O;

End,

XferType: = Xmodem'

- Dper the Status Window 1

If OpenWindow(40,1,80,7,FlagBorders,Xfer_Type) 0 then;

Status ID:=ActiveWindow.ID;

ClrScr;

For I:=1 to 5 do
Begin

GotoXY (1, 1)

* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1997 Syben, Inc. All rights reserved.

********************* Conti nue Edwe-ds Excerpt ********************)



(******************** Continue Edwards Excerpt ********************

Case I of
1: Write('Name : );

2: Write('Status :');

3: Write('Blocks :');
4: Write('Bytes :)

5: Write('Errors :');

End; {of Case!
End;

RS_Eight_Bits; t make sure we can pass eight data bits }

Blocks:=O;
ByteCount:=O;
Errors:=O;

Error Count:=O;
Block_Count:=1;
Abort:=False;

If Send then

Begin (Send the file!
Status := Txsync; { Holding for start }
Updatestatus;
Status := SyncSend ( 10 );

If Status = Tx_Keypressed then Ch := ReadKey;
Updatestatus;

IF Status = TxKeypressed THEN

{ keep status same }

ELSE IF NOT (Status IN [Tx CEE sync, TxNAK sync]) THEN BEGIN
Writeln ('No ack:nowledgement from other side');

{Status := Tntimeout;}

Update_Status;
END

ELSE

BEGIN
done := false;
While rot &Eof(XferFile)) AND NOT (done) do

Begin

Update Status;

Get Buffer ( buf, blocksize );
status := Send_Record ( Buf, Blocksize, 10, block count,

errors );

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1927 Sybe', Inc. All rights reserved.

*************4*****4 Continue Edwards Excerpt ********************)

256



(******************** Cortinue Edwards Excerpt ********************)

CASE Status OF
TxACK : BEGIN

Error Count := ErrorCount + Errors;
INC(Blocks);
ByteCount:=Byte_Count+BlockSize;
INC(BlockCount);

END;

TxNAK : BEGIN
INC(Errorcount);
If Errorcount >= retrymax then done true;

END;

TX timeout : BEGIN

!NC(Errorcount);
If Error-count >= retrymax then
done true;

End;

TxCAN,
Tx_keypressed : BEGIN

done : TRUE;
END;

ELSE BEGIN
INC (Error count);
If Error-count '= retrymax then
Begin
done := true;
Status : Tx errors;
End;

END;
END;
UpdateStatus;

End; tWHILE'
While KeyPressed do

Begin
Ch := ReadKey;
End;

END;
If Status = TX ACK then Send EOT ( status
ELSE Send-CAN;

END

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission o+ Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt ******************

25-7



********************* Continue Edwards Excerpt ********************)

else
Begin {Receive filel
Status: =Rxsync;
Updatestatus;
Status := SyncReceive ( 60, Char(NAK) );
CASE Status OF

Rx_KeyPressed : Begin
Abort := TRUE;
Update_status;
Ch := ReadKey;

End;

Rx_timeout,
Rx CAN : BEGIN

Abort := TRUE;
Update_Status;

END;

ELSE Repeat
Status := Receive Record ( Buf, blocksize, 1,

Blockcount, errors );
CASE Status OF

RxACK : BEGIN
INC(Blocks);
ByteCount: =ByteCount+Bl ockSi ze;
INC ( BlockCount );
BlockWrite(Xfer_File,Buf, blocksize );

END;
Ry: junk,
R timeout,
Fx-OldACK : BEGIN

INC ( Error Count );
IF Error-Count > retrymax THEN

abort := TRUE;
END;

RxEOT : BEGIN
Status := RxEOT;

END;
ELSE BEGIN

Error-Count := Error Count + Errors;
IF Error Count > retrymax THEN abort := TRUE;

END;
END; {CASE}

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Ccpyright 1987 Syte', Inc. All rights reserved.

******************** Cortinoe Edwards Excerpt *********************

258



(******************** Continue Edwards Excerpt ********************)

UpdateStatus;
If not Abort then
While KeyPressed do
Begin
Ch := ReadKey;
Abort: =True;
Status:=Rx keypressed;
End;

Until (Status = Rx_EOT ) or Abort;
END; f CASE I
If not Abort then Status:=Rxdone;
UpdateStatus;
If Status Q Rxdone then

Wri teAux (Char (CAN))
else

Wri teAux (Char (ACK));
End;
XmodemXfer := status;

Close(Xfer-File);
If (not Send) and (Abort) then

Erase(XferFile);

C Close the Status window .
RSRestore ( Current_COM ); f restore comport settings to whatever

was selected before }
If CloseWindow then;
14 Monitcr ID 0 then

Beg i
if CloseWindow then; C Close the monitor window if open }
Tex tzolor (Foreground);

Textbackground (Backgroundi;
Close(Monitor File):
Monitor ID :
End;

Er d- {of Xmodem_Xfer

Function CommandXfer(Send:Boolean; VAR buf : buffer;
BlockSize:Integer) : result;

?This procedure performs an command/response exchange

Input: Send - Troe to send a buffer
False to receive buffer

(* Rscrirted with eNtensive modifications from Advanceo Tecnniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
:opy-ight 1987 Sybe,, Inc. All riots reserved.

**4**************** Continue Edwards Ecerpt *******************j

251;



********************* Continue Edwards Excerpt ********************)

BlockSize - The block size to use for the transfer

VAR ending char : char;
Xfer Type:StringEl8;
done,
Abort: Boolean;
Status : result;
Ch : Char;
Errors,
Settings,
BlockCount : byte;
I,
index,
Blocks,
Numread,
Error_Count : word;
Byte_Count: Longint;

Procedure Update_Status;
Var !::nteger"
Beg 1 r;

if foritoriD > 0 then begin
if GetWindow(StatusID) then;
For I:=2 to 5 do Begin

GotoXY (1, i)
ClrEoi;
Case I of

2: Write(Xmodem_Status[StatusJ);
3: Write (Blocks);
4: Write(ByteCount);
5: Write(Error Count);

End; {of Casel
End;

If GetWindow(MonitorID) then;
END;

End; {of UpdateStatusl

Begin
If Monitor-Transfers THEN
Beg i n

If OpenWindow(1,8,80,24,FlagBorders,'Monitor Window') (0 then;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

******************** Conti nue Edwards Excerpt ********************)

260



(******************** Continue Edwards Excerpt ********************)

ClrScr;
Writeln('Opening monitor file');
MonitorID:=ActiveWindow". ID;
Assign (MonitorFile, 'MONITOR. DAT');
Rewrite (MonitorFile);
XferType:='Command Transfer';
If OpenWindow(40,1,80,7,FlagBorders,XferType) = 0 then;
Status ID:=Active_Window.ID;
ClrScr;
For I:=1 to 5 do Begin

GotoXY(1,I);
Case I of

1: Write(' ');
2: Write('Status :');
3: Write('Blocks :');
4: Write('Bytes :');
5: Write('Errors: ;

End; ?of Case!
End;

End
else

MonitorID:=0;
RS_EightBits; { make sure we can pass eight data bits 3
Blocks := 0
Errors ;= );
ByteCount:=O;
ErrorCount:=0;
BloP:_Count: =1;
Abort: =False;
if Send then

Begin Send the command.
Status := Txsync; { Holding for start 1
Update_status;
Status := SyncSend ( 10 );

if Status = Tx Keypressed then Ch := ReadKey;
Update_status;
I Status = Tx,_Keypressed THEN

t keep status same )
ELSE IF NOT (Status IN [TxCEEsync, TxNAKsync)) THEN BEGIN

Writeln ('No acknowledgement from other side');
{Status := Tx timeout;}
UpdateStatus;
END

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyrigh _ 1057 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)

26!



(******************** Continue Edwards Excerpt *******************)

ELSE
BEGIN
done := false;
REPEAT
Update Status;
status := Send Record ( Buf, Blocksize, 10, block count,

errors );
CASE Status OF

TxACK BEGIN
ErrorCount := Error-Count + Errors;
ByteCount:=Byte_Count+BlockSize;
done := true;

END;

Tx_N.Ai: BEGIN
INC(Errorcount);
If Errorcount >= retrymax then done true;

END;

TX_timeot : BEGIN
INC(Error _count);
If Error count retrymax then

done := true;
End;

Tx _CAgjr.

T ._ Ez vresse,_ : BEGIN
Writeln('aborting');
done := TRUE;

END;

ELSE BEGIN
INC (Error count);
If Error count retrymax then
Bea i n
done := true;
Status := Tx errors;
End;

END; "Case

(* Reprinted v.:t' e::tensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copright - _ ,- c. 4I1 rights reserved.

***4********4.***. Cc-tinLe Edwards Excerpt *******************)

262



(******************** Continue Edwards Excerpt ********************)

UNTIL done;
While KeyPressed do

Begin

Ch := ReadKey;
End;

END;

Update_status;

If Status = TX ACK then BEGIN
Send-EDT ( status );
status := Tx done;

END

ELSE SendCAN;

END

else

Begin {Receive file'

Status:=Rx sync;
Updatestatus;

Status := Sync Receive ( 60, Char(NAK) );
CASE Status OF
RY_KeyPressed BEGIN

Abort := TRUE;

Update_status;

Ch := ReadKey;
End;

Rvj _timeo.t,

R; 4A: BEGIN

Abort := TRUE:

UpdateStatus;
END:

ELSE Repeat

tats := Peceive_Record ( Buf, blocksize, 10,

Block._count, errors :

CASE Status OF
R.' AC : BEGIrN

Byte_Count:=Byte_Count+BlockSize;

END;
R- Jun.,
R. timeoit,
RCl d ,ACK BEGIN

INC ( ErrorCount ):

(* Reprinted with e:tensive modifications from Advanced Techniques in

Turbo Fascal by Charles Edwards, by permission o Sybe: , Inc.

Copyright l9B7 Sybe", In:. All riogts reserved.

**4****************** Cortire Edwards Excerpt **************** '

267



******************** Continue Edwards Excerpt *********************

IF Error-Count > retrymix THEN
abort : TRUE;

END;

RxEOT BEGIN
Status RxEOT;

END;

ELSE BEGIN
ErrorCount := Error-Count + Errors;
IF ErrorCount > retrymax THEN
abort := TRUE;

END;
END; {CASE)
Updat _Status;
If not Abort then
While KeyPressed do
Begin
Ch := ReadKey;
Abort: =True;
Status: =Rxkeypressed;
End;

Until (Status = RxEOT ) or Abort;
END: { CASE }
If not Abort then Status:=Rxdone;
Update Status;
I Status 0 Rx done then

WriteAux (Char (CAN))
else

WriteAux (Char (ACK));
End; { Receive )
Commard Xfer := status;

I Close the status window }
! restore comport settings to whatever was selected before
RSRestore ( Current COM ):
If Moritor I, § 0 then 1 Close the monitor window

Begir
If Close-Window then;
If Close-Window then;

Textcolor (Foreground);
Te tbae ground (Background);
CK&1=e(Moniton File);
MonitolID := C;

' q ep.r:nted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybe;, Inc.
Zop ight Q107 Sybe , Inc. All rights reserved.

******************** Continue Edwards E.cerpt ********************,

264



********************* Continue Edwards Excerpt ********************

End;
End; {of CommandXfer!

Procedure TransferFile(Send:Boolean);
iThis procedure initiates a file transfer

Input: Send - True if we want to send a file
False to receive a file

Var FileName : Long_String;
I,J:Integer;
Abort:Boolean;
status : result;

Begin
Abort: =False;

SOpenWindow(20,16,60,19,Flag_Borders,'Name') = ) then;
Ci rScr;
Write('File Name: ');

Readln( FileName );
If CloseWindow then:
IF ( Length ( FileName ) = 0 ) or (FileName = "P) THEN

{ do nothing }
ELSE BEGIN
For J:=l to Length( FileName ) do

FileName [R := UpCase( FileName ER)
Assigr ( XferOile, FileName );
If Sent then Begin

Feset(Xfer_Fjile, 1);

I IOResult > 0 then Begin
NoFile( FileName );
Abort:= rue;

End:
End
else
Rewrite(XferFile, 1);

If not Abort then status := XmodemXfer ( Send, 128 );
END;

End; tof Transfer _File

(* Reprirted witi entensive modifications from Advanced Techniques in
Tu-bo Pascal by Charles Edwards, by permission of Sybe., Inc.
Copyrignt 1987 Sybe , Inc. AlI rights reserved.

*****************~*~ Cortinue Edwards Ezcerpt ********************)

2Z5



******************** Continue Edwards Excerpt ********************)

fUNCTION Resuondbyfile ( Response : pathstring ) result;

.This procedure provides the user a response contained in a file

Input: Response - the complete path specification for the file

CONST Send : boolean = TRUE;

Var
Abort: Boolean;

Begin
Abort: =False;
Assign ( Xfer_File, Response );

W$-}1

Reset(Xfer_File, 1);
0 1 +1

I IOResult > 0 then
Begin
NoFile(Response);

Abort: =True;
End;

if nct Abort then Respondby file := XmodemXfer C Send, 128
ELSE Respondby file : Tx_CAN;

End; 1 Respondbyfile

Punction Getresponse ( BlockSize:Integer ) result;

IThis procedure performs an Xmodem file transfer

input: Seid - True to send a resoonse
False to receive a series of responses

BlockSize - The block size to use for the file transfer

Status_ID, MonitorID must be seen by WriteAux, ReadAu=

VAR endinochar : char;
Xfer_Type:StringZ63;
done,
Abo-t: Boolean;
Statu : result;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Cha-les Edwards, by permission of Syben , Inc.
Copyrigh.t 19S7 Sybex, Inc. All rights reserved.

*****~~************ Continue Edwards E,cerpt ********************

206



(******************** Continue Edwards Excerpt *******************)

Ch : Char;
Errors,
Settings,
BlockCount : byte;
I,
block,
index,
BI ocks,
Numread,
Error-Count : word;
ByteCount: Longint;
buf : buffer;
DisplayWindowID : byte;

Begin
MonitorID := ActiveWindow'.ID;
Assign (MonitorFile, 'NUL' );
Rewrite ( MonitorFile );
? Change to current comms -
RS_Eight_Bits; ? make sure we can pass eight data bits 1
Blocks:=O;
Byte_Count:=0;
Errors: =;
ErrorCount:=o;
BlockCount: =1;
Acort:=False;
Begin Receive file'

Status:=R' sync;
Status := SyncReceive ( 6,. Char(NAK) Y'
CASE Status OF
R_KeyPressed : Begin

Abort := TRUE;
Ch ReadKey;

End;

RAtimeout,
RxCAN Abort : TRUE;

ELSE Repeat
Begin
Status := Receive-Record ( Bf, blocksize, 1,
Blockcount, errors );

(* Reprinted with entensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybe:, Inc.
CopVrlght 1987 Svben, Inc. Ali rights reserved.

******************** Continue Edwards E'cerpt ********************'

26&



********************* Continue Edwards Excerpt *********************

CASE Status OF
RxACK : BEGIN

!NC(Blocks);
Byte Count: =ByteCount+BlockSize;
INC ( Block Count );

END;
Rx junk,
Rx timeout,
Rx OldA CK : BEGIN

INC ( Error Count );
IF Error-Count > retrymax THEN abort TRUE;

END;

RxEOT : BEGIN
Status Rx _EOT;

END;

Rx CAN : BEGIN
abort TRUE;

END;

ELSE BEGIN
ErrorCount ErrorCount + Errors;
IF ErrorCount retrymax THEN abort TRUE;

END;
END; ,C E.
if not Abort then
While Ke'yPressed do

C Readev:
7r0 Lk =r e;

tet,'s: =R:.' k eypr essed;

END { Receive
)rtil =tt. : R; 8 EOT ) or Abort;

END; CA-E '
If not Abort then Status:=Rx done;

If Status R> done then
WriteA X (Char (CAN))

else
WriteAL. (Char (ACK));

End;
Get -esponse := status;

* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1q8- Svbe,,, Inc. All rights reserved.

******************** Continue Edwards Excerpt ********************)

26S



(******************** Continue Edwards Excerpt ********************)

restore comport settings to whatever was selected before }

RSRestore ( CurrentCOM );

If Monitor ID > 0 then
Begin
Textcolor(Foreground);
Textbackground(Background);

Close(MonitorFile);

Monitor_ID := 0;

End;

End; { Getresponse }

BEGIN

Suppress_EOT := FALSE;
SuppressCAN := FALSE;

MonitorTransfers := TRUE;

monitor gate := false; { don't display xmodem packet headers }

END.

* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Co:pyright 1967 Sybe,:, Inc. All rights reserved.

********************* End Edwerds E .!cerpt *********************

260,



APPENDIX AA

SOURCE LISTING FOR PROGRAM DISTRIB

DISTRIB.PAS
(**** This is the main program for the Master/Slave networked ****)
(**** computer system. The same program is used for both the ****)
(**** Master and Slave, with the function being selected from ****)

(**** the command line as follows:

(**** Master: Distrib Master (also allows program config

(**** Server: Distrib Server

(**** Reference: Edwards, C. C., Advanced Techniques in Turbo ****)
Pascal, pp. 220-275, Sybex, Inc., 1987

(**** Heavily modified from the terminal emulation program

(**** found in the reference. Converted to a Turbo Pascal 4.0 ****)
(**** proqram by Nelson Ard

(**** Last Modification: Sep 89

(* Modification history
S Lep 85 - Replaced local RS232 write procedure with

DataCom.SendString

•$R-K .Range checking onj.
{.B1 {Boolea-, complete evaluation on]

$Stac:: checking or
•,/0 checking on3
' c numeric coprocessorl

{$M 65500,163.84,65500} (Modified default stack and heap].

Frograq. Distrib;

Uses
Datacom,

Wndow,
Xmodm,
Dire~to-.
Gene-&!,

470



ErrorCod,
Support,
Printer,
Parser, Spawn, miscpack;

********************* Start Edwards Excerpt ********************

Procedure Save File(D:Boolean);
This procedure asks the user if he wants to save a changed

configuration If so, it writes the appropriate file

Input D: True if saving default values

Felse if saving phone file

Var Configure:File of Byte;

Phone:PhoneRecord;
J: Integer;

Begin
if OpenWindow(50,9,67,12,FlagBorders,'') = 0 then;
ClrScr;

If D then
Write('Save defaults?')

else
Write( 'Save this entry?');

If Yes('Save') then

Begi '
C: rScr;
Write('Saving... ');
if D then

Begin
Assion(Configure,Defaults.Default Name);

Reset (Configure) ,

If IOResult > 0 then
NoPile(Defaults.Default Name)

el se
Begin
cirScr;
Writeln('If you want to use these parameters');
Write('You must end and restart Distrib');
OK( ');
I Close-Window then;

End;
End

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission o+ Sybex, Inc.

Copyright 1967 Sybe, inc. All rights reserve.

******************** Continue Edwerds E'cerpt ********************)

27!l



(****************Continue Edwards Excerpt**********)

else
Begin

UR,
Assign (Phone_.File, 'DISTRIB.PHN');
Rewrite (Phone-File);
For 0=1 to PhoneMenu^.Length do

Begin
Phone. Name:=PhoneMenu^. NamesEJ3;
Phone. Phone-Data: =PhoneStuff"[J);
Write (Phone-File ,Phone);
End;

Close(Phone-Fi le);
(%R+

End;
End:

1f Close-Window then;
End; iof SaveFile)

M -1
Procedure Write_ALIX_String ( S : STRING )
(This procedure writes a. string out to the currently selected COM port]
VAR index : byte;

BEGITN
FOR: indeL< := 1 TO Length(S) DO BEGIN

RS232,Out (SEindexj);
END;

END;~

Proceduire Dia Phone(I :Intecger; DemonDial:Boolean);
fThis procedure dials a phone entry. The demon dial feature is the
only feature of Distrib which explicitly assumes the presense oY
a Hayes or Hayes compatible modem.

input: 1 - The index~ into the phone array that we are to dial
DemonDial - true if we are to repetitively dial until an

answer is obtained

Van Court: Integer;
S:Long_String;

MConnected: Eoolean;!

A* Reprinted with em~tensive modifications from Advanced Techniques in
Turbo Faszal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

***************** Continue Edwards Excerpt **********



(****************Continue Edwards Excerpt**********)

3: Integer;
Time: Integer;
quit : boolean;

Procedure Flush_Buffer:
Var Ch:Char;
Begin
Repeat Begin

Ch := R6232_In;
If not RS232_Avail then Delay(200);
End

Until not RS232_Av ail;
End; (Of FlushBuffer)

Begin
RB Cleanup-;

Wit, Phone BtufVEI3 do
Begi~n
RE_ Initialize(Defauits.DefaultModern,PhoneBaud,PhorieParity,

PhoneStop,F'hone_Length);
Echo:F'honeEcho;
End:

Damon0 _Dial ther%

Plishjafter;
011006; {Eave modem time to reset)

DaCom.SendEtring('ATVQO0E1E7='+Char(DiaiDelay)+Char(CRJ);
if Cpe- Wirdcw(i5q09,65,i7qFlagBorders, Dial') = tn Mrn;
CI s:-
Wr:tein( Name :,,PhoneMenu".Names[13);
W-iteln('Attempt

W~itelnE'tatuE

WirtelnuStarte: . qCCtTime';

Writeln('ialed at

Writeln('Eiapsed
K'ute('Cotions :ESC to abort ... any other key to cycle');
PlushBuf'er;
Count:=0;

quit := Faise.

~*Rep-inted with extensive modifications from Advanced Techriaues in
Turbo Pascal by Charles Edw~ards, by permission of Bybe%, Inc.
Top vright 1987 Bybe., Inc. All rights reserved.

* **********#*t*.****Cnnt anue Edwtards Ezcerpt **********



(******************** Continue Edwards Excerpt ********************)

Repeat Begin
Count: =Count+l;
Time:-O;
GctoXY(12,2);
Write(Count);
GotoXY(12,3);
ClrEol;
Write( "Dialing" ;

GotoXY(12,5);
Write(Get Time);

DataCom.SendString (PhonePrefi x+PhoneStuff"[I].Phone_Number
+Char (CR));

Flush_Buffer;
0=0;
Dely(20(i); {Give time to dial the phone!
While not (KeyPressed or RS232_Avail) do

Begir.
Delsy(l); This delay is correct for the PC or XT,

it may have to be changed for an AT or
faster bo',

If j = 100x ther,
Begi n
Time: =Tmewl;

MX(26)"

i -Ecl;
Write(Tixe. Seconds');
J:=O;
End.,

I_ kevFresset then

Ch := ReadKey;

if Kev-ressed then
Ch: ReadKey;

14 Ch = Char(ESC) then
Beg i n

S:='Aborted"
quit := True;
End

el se

S:='Cycling';

(* Reprinted with ex:tensive modifications from Advanced Techniques in

Turbo Fasca: by 7har'es Edwards, by permission of Sybex. Inc.
Copvright 19E7 SvE_ Inc. Ail rights reserved.

******4*4****** * :.tinue Edwards Excerpt *********************

274



(**************** Continue Edwards Excerpt**********)

DataCom.SendStri ng(Char(Ch));
Delay (2000);
I* Rs2:2_Avail then FlushBuffer;
End

else
Begin

* S:='';
Repeat Ch := RS232_In until Ch =Char (LF);
Repeat Begin

Ch :=RS232_In;
If Ch >Char(US) then

S:=S+Ch;
End

until Ch = Char (LF);
End;

CirEol;
4rj te (5);
If not Connected then Delay(5000);
End

Until Connected OR quit;
For Count:=! to 101 do Beep(500):
if Close_Window ther;

L:to.SendStringiFhoreFrefix<+Phone_Stuiff [!J.Phone_Number±,
Char (CR))

End: Mo Dia!,Phone&

Procedure Dial __P~ rectorv;
KMhas pr o:edura allows the user to dial or modify any of the entries in
the phone array'

Funct:or GetDial:Integer;
Beg
if OperWndow(24,5,6,Min(6+PhoneMenu.Lengthl7) ,FlagBorders,

'Phone List') = 0 then;
Get _Dial:=Process-WindowMenu(Phone_Menu");
1; Close-Window then;
End: 04~ Get-_Dial]

A* Reprirted with extensive modifications from Advanced Techniques in
TL"-bo Pascal by Charles Edwards, by permission of Sybe., Inc.
Gooyrjiqht 1.967 Sybep Inc. All 7ights resev-ved.

**~*************Cont:rt.e Edwa."ds E;acerpt *********)

Z75~



(****************Conti nue' Edwards Excerpt**********)

Begin
If OpenWindow(36,5,44,11,FlagBorders,'Choice') 0 C then;
I:=Process_-Window -Menu (Dial Menu);
If Close-Window then;
Case I of

0): ; fCESC... No Choice)r
1,2:Begin (Dial or Demon Dial)

J:=GetDial;
If J > 0) then

Dial .1Phone(J,I=2);.
End-,
Begin (Modifyl
I: GetDi al;
If I ",0 then

ModifyEntry(I);
End-,

4: Begin (Delete)f
if P'honeMenu'".Length 1 then

Begin
If OpenWindow(45,9,67,12,FlagBorders, ') 0 C then;
CirScr;
Write( 'Cannot delete last entry');
OK,-'),
I+ Close Window then;
End

B~eg i n

I1 0C then
beg in

Old Phone MenLu:=Fhone Menu;
OldPhoneStuff:=PhoneStUff;
J:=Phone Menu .Length;-
GetMer(PhoneSttff, (3-1)*Si7-eof (Phone Params);
GetMem(PhoneMenl, (J-1)*cSiz eof (PhIoneName)+2 );
Move(Old _ PhoneMenu',PFhone_Menu", (I-1)*

.S' eo+ (Phone Name) +-D
Move(OldPhone Stuf ,PhoneStUf f", (1-1)*

Sizec-f(Phone Params))l;
If I -3 then

BegiJ-

Move (Ol dPhone MenU.. Names[ 1+132
PhoneMenU". Names III,
(J-1) *Si -eo* (PhoneName))

(* eprinte.- with, etensive modi-Fications from Advanced Techniques in
T;Lr'-c. P-scsl by Charles Edwards, by permission of Sybe;x, Inc.

S19p- S-,'be;, inc. All riglits reserved,
*.4*~.**'********Cortinue Edwards Ex'cerpt **********



(****************Continue Edwards Excerpt *********)

Move (Old-Phone-StuffC 1+1] ,PhoneStuffNII),
(J-I)*Sizeof (PhoneParams));

End;
PhoneMenu'.Length: =3-1;
FreeMem(Old-PhoneMenu,J*Sizeof (PhoneName)+2);
Freelen(Old-PhoneStuff ,J*Sizeof (PhoneParams));
SaveFile(False);
End-,

End;
End;

5: Begin WWId

OldPhoneMenu:=Phone_Menu;
Old-PhoneStuff :=PhoneStuff;
GetMem(Phone-Stuff, (Phone-Menu&.Length+l)*

Sizeof(PhoneParams));
GetMern(Phone-Menu, (PhoneJ_ enu".Length+l)*

Sizeof (Phone-Name)+2);
IdPhoneMenu.Length;

Move(OldPhoneMenu",PhoneMenL',I*Sizeof (PhoneName)+2);
Move(Old-PhoneStuff",Phone_Stuff ,*Sizeof (PhoneParams));
I: =I+I;
F'hone rlenL'.Lerngth:=I;
Phone-Menu".NamesEI3:='. .. o be provided...
Move(Defaults.DefaltPhone,PhoneStuff"EIJ,

Sizeof (Phone_Parans));
ModifyEntryli);
PreeMem!COd_PhoneMenu, (I-1)*Sizeof (Phone_Name)+2);
Free(l-PoeSuf(I-I)*Sizeof (PhoneParams));

End:
Ent; (Of Case3

End7 Co* Dialing _Directoryl

Prozedure Dirs;

? Replacement directory j

CONST
Start : integer = 5;
Finish : integer =20

(*Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybe:, Inc.
Copyright 1987 SybeK, Inc. All rights reserved.

*****************Continue Edwards Excerpt **********

277



(******************** Continue Edwards Excerpt ********************)

VAR
error : integer;
DirInfo : Dos.SearchRec;
S,

Mask,
Option string;
Directoryfound : Boolean;
FromLine : integer;
Ch : Char;

Begin
GetDir(0,S);
If OpenWindow(1,Start,80,Finish,FlagBorders,S) = 0 then;
ClrScr;
IF OpenWindow ( 5, Start + 5, 70, Start + 7, FlagBorders,

'Mask? *.* is default' ) = 0 THEN;

GotoXY ( 1,1 );
Readln ( Mask );
IF Length (Mask = 0 THEN Mask := '*.*

If Close-Window then;
ClrScr;
IF Open_Window ( 5, Start + 5, 70, Start + 7, FlagBorders,

'Options?' ) = 0 THEN;
GotoXY ( 1,1 );
Write ([ none = dir (Mask), ''w'' dir (Mask) /w ] ');

Readln ( Option );
If CloseWindow then;
CirScr;
1F Length ( Option ) 0 THEN BEGIN

GotoXY ( 1,1 );
ShowDir ( Mask, 1, 13, error

END
ELSE CASE Option[l] of

w', 'W' BEGIN
GotoXY ( 1,1 );
ViewDir (Mask, i, 13 );

END;
END; {CASE1
GotoXY ( 1, 13 )"
Write('Finished...Press any key');
Ch := ReadKey;
If KeyPressed then Ch := ReadKey;
If Close-Window then;

End; {of Dirsl

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt *********************

278



********************* Continue Edwards Excerpt ********************)

Procedure ChangeDC_Parameters;

.This procedure allows the user to choose from a list of speed,

parity, word length, and stop bit configurations)

Var I:Integer;
Begin

If OpenWindow(67,1,79,23,FlagBorders,'Baud-P-L-S') = 0 then;

ClrScr;

I:=ProcessWindowMenu(CommunicationsMenu);

If I > 0 then

Begin

RS_Cleanup;
With CommunicationsStuff[I] do

Begin

PS Initialize(CurrentCom,Speed,Parity,Stop,Length);
End;

End;

If CloseWindow then;

End; {of ChangeDCParameters}

Procedure Hangup;

{This procedure hangs up the Hayes compatible modem!
Var Ch:Char;

Begin

Repeat Begin
While RS232_Avail do Ch := R...,_In;

Delay(500);
End

Until not RS232_Avail;

DataCom.SendString('+++');
Delay(25-);
DataCom.SendString('ATHO'+Char(CR w

Delay(1000):
While RS272_Avail do Ch := RS232_In:

End; (of Hangup}

Procedure DosShell;

{This procedure opens a window and spawns a DOS command processor}

Var Prog,Param,Dir:String;

I:Intege,;

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybex, inc.

Copyright 1927 SybeN, Inc. All rights reserved.

******************** Ccntirue Edwards Eycerpt *******************)

279



(******************** Continue Edwards Excerpt ********************)

Begin
Prog:=FindEnvironment('COMSPEC');
If Length(Prog) Q 0 then BEGIN
Param:=' ';
if OpenWindow(40,5,60,BFlagBorders,'DOS') = 0 then;
ClrScr;
Writeln('Opening Dos Shell');
Write('Use EXIT when done');
OK('');
If Close-Window then;
If OpenWindow(1,1,80,25,0,') = 0 then;
ClrScr;
GetDir(O,Dir);
Exec (Prog, Param);
System.ChDir(Dir);
if doserror Q 0 THEN BEGIN
If OpenWindow(40,1,75,3,FlagBorders,'DOS Error') = 0 then;
CIrEol;
Writeln (Error _CodeCDosError]);
Delay ( 2000 );
If CloseWindow then;

END;
I Close_Window then;
END
ELSE BEGIN

If OpenWindow(35,10,75,13,FlagBorders,'Error') 0 then;
ClrEoi;
Write1nK Unatle to open DOS shell');
Write(' ''COMSPEC'' not found in environment');
M ''),

If Close_Window then:
END;

End; ?o? Dos_Shell

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission o; Sybex, Inc.

Copyright 1967 Sybex, Inc. All rights reserved.
********************* End Edwards Excerpt ********************)

FUNCTION Operatorinput ( Title : Windowtitle;
Prompt : PathString ) PathString;

VAR Response : PathString;

BEGIN
IF Open_Window ( 5, 10, 75, 11, FlagBorder:, Title ) = 0 THEN
BEGIN

ClrScr;

280



Writeln ( Prompt );
Readln ( Response );
Operator_Input := Response;
IF Close-Window THEN;

ENP
ELSE OperatorInput

END;

PROCEDURE Operatormessage ( Title : Windowtitle;
Message : PathString );

BEGIN
IF Open_Window ( 40, 10, 80, 13, Flag_Borders, Title ) = 0 THEN BEGIN

ClrScr;
Writeln ( Message );

END
END;

FUNCTION Process_command result;

CONST Receive : boolean = FALSE;
Transmit : boolean = TRUE;

VAR
inde'n : b yte;

Response : String128;
Restype : Responsetype;

Erro-_msg : String128;
Errtype : Responsetype:
Prompt : String128;
buf :buffer;
spnd :boolean:
Server_ID : byte;
status : result;
CK : che-;
finished boolean;
debugging boolean;

BEGIN
debugging := FALSE;
finished FALSE;
IF Open_Window ( 1, 1, 80, 7, FlagBorders, 'Remote Server') = 0 THEN;
ClrScr;
ServerID : ActiveWindow'.ID:

For index 1 TO 4 do BEGIN
GotoXY ( 1, index );
CASE index OP

I . Write ('Server Version 1.0');
2 W-ite K'Function : Initializing');
- Write PStatus : Awaiting Command');

281



4 Write ('Command : ');
END; { CASE }

END;

Send := FALSE;
Redirection := true;

{Send string ('xmodem st test.tst');}
IF Get Window ( ServerID ) THEN;
GOTOXY ( 12, 2 );
Write ('Getting Command');
REPEAT

status := CommandXfer ( Receive, buf, 128 );
UNTIL ( status Rx done ) OR ( status = Rx_keypressed );
IF GetWindow ( ServerID ) THEN;
Process-command := status;
IF ( status = Rxkeypressed ) AND NOT ( debugging ) THEN BEGIN

IF Close window THEN;
WHILE keypressed DO

Ch := readkey;
EXIT;

END;

GOTOXy70 i1, 2 );
Write ('Parsing Command');
GOTOXY ( 12, 3. );
Write ('Executing Command ');

GOTOXY ( 12, 4 );

IF debugging THEN
String_to_buf ( OperatorInput C 'Command', 'server command?'',

buf );

Write ( buf _tostring ( buf ) );

Parsermain( buftostring (buf), Response, Restype,
Errormsg, Errtype, Prompt );

CASE Er'type OF

strng BEGIN
IF Length ( Errormsg ) 0 THEN BEGIN
string tobuf ( Errormsg, buf );
REPEiAT

status := CommandXfer ( Transmit, buf, 128 );
UNTIL ( status = Tx done )

OR ( status = Tx keypressed
OR ( status = Tx _CAN );

Frocess-command status,
CASE status OF



Txkeypressed : BEGIN
IF Closewindow THEN;
WHILE keypressed DO

Ch.'= readkey;
finished TRUE;
EXIT;

END;

TxCAN BEGIN
finished TRUE;

END;

END; {CASE}
END; {IF-

END;

filetype : BEGIN
status := Xmodm.Respondbyfile ( Errormsg );

END;

nothing : BEGIN
END;

END; .CASE.

IF NOT (( finished ) OR ( status = TxCAN )) THEN

CASE Restype OF

strng BEGIN
string_to_buf ( Response, buf );
REPEAT
status := CommandXfer ( Transmit, buf, 128 );

UNTIL ( status = Tx-done )
OR ( status = Txjkeypressed
OR ( status = TxCAN );

Pr-ocesscommand := status;
CASE status OF

Txkeypressed : BEGIN
IF Close-window THEN;
WHILE keypresseo DO

Ch := readkey;
finished TRUE;
EXIT;

END;

TxCAN BEGIN
finished TRUE;

END;
END; ?CASE,

END-"



filetype : BEGIN
status := Xmodm.Respond byfile ( Response );

END;

nothing : BEGIN
END;

END; { CASE )
IF NOT finished THEN BEGIN

IF Get-Window ( ServerID ) THEN;

GOTOXY ( 12, 2 );
Write ('Forwarding Prompt');
GOTOXY ( 12, 3 );
Write ('Command Complete');
GOTOXY ( 1, 4 );
Write ('Prompt :
GOTOXY ( 1, 11 );
Write ( Prompt );
string to buf ( "M + Prompt, buf );
REPEAT
status := Command Xfer ( Transmit, buf, 128 );

UNTIL ( status = Tx done
OR ( status = Txkeypressed
OR ( status = T-_CAN );

Send _CAN;
WHILE keypressed DO

Ch := readkey;
Process command := status;
IF GetWindow ( Server ID ) THEN;

END;
IF Close window THEN;

END;

************************ Start Edwards Excerpt *********************

1 Sep 89 global variables eliminated

CONST Commse_enu : integer = 9;
CommsFns : ARRAY [1..9] OF STRING [ 24 ]

'Initialize port
'Connect to current port ',

'Disconnect current port ,

'ZCOPY file to remote
'ZCOPY file from remote ',

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Fascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

******************* Continue Edwards Excerpt ********************)

284



********************* Continue Edwards Excerpt ********************

'Get machine status
'Login to remote machine ",
'Reset remote server
'(ESC) Exit

Comms Stat Menu : integer = 7;

Comms Stat : ARRAY C ..7 ] OF STRING C 16 ] =
'Comm Port
'Speed
'Word Length
'Parity
'Stop Bits
'Function
'Status

FUNCTION Commsfunction result;

CONST Receive : boolean FALSE;
Transmit : boolean TRUE;

VAF
I,
ServerID,
Save Window,
Status-Window,
RemoteWindow,
FinCtion Window Byte;
Verbose : boolean;
quit : boolean;
List : EquipmentListType;

Procedure UpdateStatus ( Fn, Status string );

VAR J : Inteqer;

BEGIN
if Get Window ( Status_Window ) THEN;
FOR J := I to CommsStatMenu DO BEGIN
GoToXV 18, J );
CIrEOL;
WITH Comport I CurrentCOM I DO
CASE J OF
I : Write ( CurrentCOM );

: Write ( Speed Msg[ORD( Speed ) + 1 2);

(* Reprinted with extensive modifications frcm Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission- of Sybex, Inc.
Copyright 187 Sybe:, Inc. A:l rights reserved.

********************* Continue Edwards Excerpt ********************

285



(******************** Continue Edwards Excerpt ********************)

3 : Write ( LengthMsg[ Length-4] );
4 : Write ( Parity Msg[Min(ORD( Parity )+1, 3)));
5 : Write ( StopMsg[ Stop + 1) );
6 : Write ( Fn );
7 : Write ( Status );

END; { CASE }
END;
IF GetWindow ( Function-Window ) THEN;

END; C Update Status I

Procedure Reset-remote;
{ This procedure forces the remote server to return to the
command receive mode}

BEGIN
UpdateStatLIs ( 'Resetting', 'Please wait. . . )

Xmodm. SendCAN;
delay (500);
Xmodm. SendCAN;
delay (500);
Xmodm.SendCAN;
delay (500),
Xmodm.Send_CAN;
delay (500);

END;

Function Remote Command ( Command String128 ) boolean;

VAR Ch : char;
status : result;
buf f~er;

Function stop case ( status : result ) boolean;

BEGIN
stopcase : status = Rxjkeypressed

OP status = R' _CM ):
"OR status = Rx done);I

END;

BEGIN
IF Verbose THEN Writeln ('sending command');
stringto buf ( Command , buf );

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1967 Sybe' , Inc. All rights reserved.

****************** Continue Edwards Excerpt ********************)

286



********************* Continue Edwards Excerpt ********************)

REPEAT
status := Command Xfer ( Transmit, buf, 128 );

UNTIL ( status Tx-done ) OR ( status = Txkeypressed );
CASE status OF
TxCAN,
Tx keypressed BEGIN

Update Status ( '', 'Aborted');

IF GetWindow ( Remote-Window ) THEN;
WHILE keypressed DO

Ch := readkey;
Remote Command := FALSE;

END;

Tx done BEGIN
Xmodm.Monitor_transfers := FALSE;
IF Verbose THEN Writeln ('Getting response' );
REPEAT

scatus := GetResponse ( 128 );
UNTIL stopcase ( status);
CASE stains OF

R keypressed
BEG 1.N1

W-iteln

W'Aborted by user waiting for response');
delav ( 1 )C ;
WHILE Keypressed DO

Ch := readkey; ( clear the keypress
Remote_ ommand := FALSE;

END-

R"_done,
R: CAN

BEGIN 7 normally the signal to turn
the link around for the ne, t
command 3

Remote-Command := TRUE;
END;

END; { CASE -

END;
END; t CASE }

END; { Remote Command ]

(* Reprinted with extensive modifications from Advanced Techniques in

Turbo Pascal by Charles Edwards, by permission of Sybe., Inc.
Copyri;ht 19_7 Sybey', Inc. All rights reserved.

********************* Continue Edwards E.cerpt ********************)

287



********************* Continue Edwards Excerpt ********************)

Procedure Rlogin;

VAR quit : boolean;

Command : String128;

buf buffer;

BEGIN

quit FALSE;

Update_Status ( 'Login to remote', ';

IF OpenWindow ( 1, 1, 80, 23, FlagBorders,
'Remote system - ESC terminates') = 0 THEN;

ClrScr;
RemoteWindow ActiveWindow".ID;

IF Veroose THEN Writeln ('synchronizing');
Writeln (°rying . . ');

Command 'Prompt';

REPEAT
IF NOT ( RemoteCommand ( Command ) ) THEN BEGIN
Writelr ('Command failed');

quit := TRUE;
END

ELSE BEGIN
Command Operatorinput ( 'Command E"!<CR>" to quit>,

'Command to send to remote )

IF (Fos ''', Comman0 ) <> 0) THEN REPEAT
Command := Operator_input ( 'Quit', 'Quit? In, y ;

quit := (Command = 'Y') OR (Command = 'y')

OR ( Command ')

UNTIL (quit OR NOT (Command = 'n') OR NOT (Command 9N'));
END:

UNTIL quit;

Xnom.Mc tr -ansers := TRUE;
IF GetWindow ( Remote Window ) THEN;
IF CloseWindow THEN; ? Close the Remote Window j

END; { Riogin

Procedure Rx File;

CONST Curnt_COK : String [ 5 3 = 'COMIl';

VAR Dir : Pathstring;

Command : St-ing128;
status : result:
quit : Mclean;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.

Copyright 1997 Sybe, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)

288



(******************** Continue Edwards Excerpt ********************

Ch : Char;
Settings : byte;
buf : buffer;

BEGIN
quit false;
Update_Status ( 'Receive File', ''

{ Open message window J

IF OpenWindow ( 1, 12, 80, 20, FlagBorders,
'Receive File Monitor - press any key to abort') 0 THEN;

ClrScr;
Remote Window := ActiveWindow".ID;
Command := Operatorinput ( 'File to Receive',

'Full Path at remote?');
Writeln ('Trying . . .');
string to buf ( 'zcopy ' + Command + + CurntCOM, buf );
IF Verbose THEN Writeln ('sending command');
REPEAT

status := CommandXfer ( Transmit, buf, 128 );
UNTIL ( statust = Tx done ) OR ( status = Txkeypressed );
WHILE hKeypressed DO

Ct := Readi:ey;
1F stltuLIS Tx done then BEGIN

Writeln ('Aborted by user on send');
deliz (10CC ;
quit := true;

-F I

ELSE BEGIN
IF OpenWindow ( 1, 1, 80, 25, 0, '') 0 THEN BEGIN
ClrScr;
GetDir k 0, Dir );
Exec ( 'zcopy.com', + Curnt COM );

RSCleanup;
RSRestore ( Current_COM );

IF Close Window THEN;
IF DosError 0 THEN BEGIN
W-iteln ('DOS Error ', Error-Code E DOSERROR ] );
Delay (2000);

END;
System.ChDir ( Dir );

END;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Syte;, Inc.

Copyright IQ87 Sybex, Inc. All rights reserved.
********************* ContinUe Edwards Excerpt ********************)

289



********************* Continue Edwards Excerpt *********************

IF Verbose THEN Writeln ('Getting response' );
REPEAT
status := Get Response ( 128 );

UNTIL ( status = Rx keypressed
OR ( status = RxCAN );

IF status = Rx,-keypressed THEN BEGIN
Writeln ('Aborted by user waiting for response');
delay (1000);
quit := true;

END;
Xmodm.Monitor transfers := TRUE;

END;

( Close message window }

IF Close-Window THEN;

END; { Rx File '

Procedure TxFile;

CONST CurntCOM String r 5 J 'COMI';

VAR Dir Pathstring;
quit boolean;
Command : String128;
Ch :Char;
buf buffer;
status : result;

BEG I N
quit := false;
Update_Status ( 'Transmit File', '

Open message window I

IF OpenWindow ( 1, 12, 80, 20, Flag Borders,
'Transmit File Monitor - press any key to abort') = O THEN;

ClrScr;
Remote_Window := Active Window". ID;
Command := Operatorinput ( 'File to Transmit',

'Full Path (local)? ');
Writeln ('Trying . . .');
string_tobuf ( 'zcopy + Curnt_COM, buf );

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

*******4************* Continue Edwards Excerpt ********************)

290



(******************** Continue Edwards Excerpt ********************)

IF Verbose THEN Writeln ('sending command');
REPEAT

status := Command Xfer ( Transmit, buf, 128 );
UNTIL ( status = Txdone ) OR ( status = Txkeypressed );
WHILE Keypressed DO

Ch := Readkey;
IF status <> Txdone then BEGIN
Writeln ('Aborted by user on send');
delay (1000);
quit := true;

END
ELSE BEGIN

IF OpenWindow ( 1, 1, 80, 25, 0, ' ) 0 THEN BEGIN
ClrScr;
GetDir ( 0, Dir );
Exec ( 'zcopy.com , + Command + + CurntCOM );

RSCleanup;
RS Restore ( CurrentCOM );

IF Close Window THEN;
IF DosError :- 0 THEN BEGIN
Writeln ('DOS Error ', Error Code E DOSERROR I );
Delay (2000);

END;
System.ChDir ( Dir );

END;
I: Verbose THEN Writeln ('Getting response' );
REPEAT

status := GetResponse ( 128 );
UNTIL ( status = Rx_keypressed

OR ( status = R"_CAN );
IF status = Rxjeypressed THEN BEGIN
Writeln ('Aborted by user waiting for response');
delay (1000);
quit := true;

ENE-
Xmodm.Monitortransfers := TRUE;
(IF CloseWindow THEN;)

END;

{ Close message window .

IF CloseWindow THEN;
END; .' TxFile I

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)

291



(******************** Continue Edwards Excerpt ********************)

Procedure GetEquip;

VAR Command : string128;
buf : buffer;

BEGIN
UpdateStatus ( 'Getting remote equipment', '"

IF OpenWindow ( 1, 1, 80, 23, FlagBorders,
'Remote system - ESC terminates') = 0 THEN;

ClrScr;
Remote Window : Active Window. ID;
IF Verbose THEN Writeln ('synchronizing');
Writeln ('Trying . . .');
Command := 'Equip';
stringto-buf ( Command , bif );
IF ( RemoteCommand ( Command ) ) THEN;
Xmodm.Monitor transfers := TRUE;
IF Close-Window THEN;

END; { Get Equip }

BEGIN
Verbose := TRUE;

IF OpenWindow 1 1, 2, 80, Comms Stat Menu + 3, FlagBorders,
'Current Port' ) = 0 THEN;

StatusWindow ActiveWindow". ID;
ClrScr;
FOR I := 1 TC CommsStatMenu DO BEGIN

GoToXY ( 1, 1);

Write ( CommsStat [ I ], ':

END;
IF Open Window ( 41, 2, 75, Comms Menu + 3, FlagBorders,

'Functions') = 0 THEN BEGIN

Function-Window ActiveWindow"".ID;
ClrScr;
UpdateStatus ( '', '

END
ELSE Writeln ('Can''t');
REPEAT

I := ProcessWindowMenu ( CommsMenu );
quit := false;

CASE I OF

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission o; Sybex, Inc.

Copyright 1967 Sybex, Inc. All rights reserved.
********************* Continue Edwards Excerpt ********************)

292



(******************** Continue Edwards Excerpt ********************

0C ; { ESC - do nothing I

I : BEGIN tInitialize port I
UpdateStatus ( 'Intializing',

'Select new parameters' );
ChangeDCParameters;
SaveWindow := ActiveWindow.ID;
S Cleanup;

WITH Comport I CurrentCOM I DO
RS Initialize ( CurrentCOM, Speed, Parity,

Stop, Length );
UpdateStatus ( 'Completed','');
IF GetWindow ( SaveWindow ) THEN;

END;

: BEGIN CConnect to port
If Open Window(40,15,47,18,FlagBorders,'Port') = 0 then;
CirScr;
I:= Process Window Menu(Comm Menu);
IF I IN [Coml..Com2] THEN BEGIN
CurrentCOM I;
RS_Cleanup,
WITH Comport [ Current COM J DO

RS Initialize ( Current _COM, Speed, Parity, Stop,
Length );

If CloseWindow then;
Update_Status ( 'Connecting', ' )

ENE
ELSE
Update Status ( 'Can''t', 'Port out of range' );

END;

BEGIN {Disconnect current port I
UpdateStatus ( 'Disconnecting', '"

RS_Cleanup;
{ Disable those interrupts
END;

4 BEGIN Put file to remote }
Update-Status ( 'Putting File', ''

Tx File;
END;

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************i

29o,



(******************** Continue Edwards Excerpt ********************)

5 : BEGIN M6et file from remote }
UpdateStatus ( 'Getting File', ;
Rx_File;

END;

6 : BEGIN Get machine status
GetEquip;

END;

7 : BEGIN {Login to remote machine }
Rlogin;

END;

8 : BEGIN ([Reset remote machine }
Reset remote;
UpdateStatus ( 'Reset', °

END;

9 : BEGIN {(ESC) Exit k

I := 0;
END;

END; "{CASE'

UNTIL (I = 0) or (quit);
IF CloseWindow THEN;
IF Close Wincow THEN;
CommsFunction := Tx done;

END; { CommsFLrnction J.

Procedure HandleAlt _Key(B:Byte);
{This procedure handles the ALT-Key combinations.

Input: B - the high order byte returned from CheckKeyboard

Var .:Integer;
S: LongString;
status : resuilt;

Begin
Case B o+

Aft-A: Begin {Drive and path)
if OpenWindow(10,3,50,7,FlagBorders,'Path') = then;
CIrScr;

(* Reprinted w:th extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 19S7 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)

294



********************* Continue Edwards Excerpt *********************

Writeln('Enter new drive and path using format:');
Writeln('D:\Path\Path...');
Readln(S);
If Length(S) > 0 then

System.ChDir(S);
If CloseWindow then;
End;

AltB: Begin (Break)
RSBreak;
End;

Alt_C: Begin Clear screen
Modify_Entry(O);

End;
AltD: Begin (Dial)

DialingDirectory;
End;

AltE: Begin (Echo)
Beep(250);
Echo:=not Echo;
End;

Alt_F: Begin (Data comm parameters]
ChangeDCParameters;
End;

AltG: Begin {Show disk directoryl
Dirs;

End;
AltH: Begin {Hangup?

Beep(250);
Hangup;

En d;
tL: Begin (DOS Shell'

DosShell;
End;

AItM : Begin

Status : CommsFunction;
End;

AltP: Begin
Status " Comms Function;

End;
Alt_R,
PgDn : Begin (Receive a file!

If AsciiDownload then
Begin
Close(AsciiFile);

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********************* Continue Edweds Excerpt ********************)

295



******************* Continue Edwards Excerpt *********************

AsciiDownload:=False;
If OpenWindow(35,10,66,13,Flag Borders,'') = 0 then;
ClrScr;
Write('Receipt of file terminated');
OK('');
If Close-Window then;
End

else
TransferFile(False);

End;
Alt_S: Begin tActivate Server)

REPEAT
Status := ProcessCommand;

UNTIL ( status = Rxkeypressed ) OR
( status = Txkeypressed );

End;
Alt_T,
PgUp Begin fTransmit a file)

TransferFile(True);
End;

AltX: Begin {Exit}
Beep(400);
EndEmulator:= TRUE;
If EndEmulator and AsciiDownload then

Close(AsciiFile);
End;

Home: Begin {Help,
If Open Window(1,1,29,Min(20,HelpMenu+2),FlagBorders,

'Help')= 0 then;
ClrScr;
I:=ProcessWindowMenu(HelpMenu);
if CloseWindow then;
If i > 0 then

HandleAlt_Key(Help_Index[I]);
Erd;

Else Begin
Beep(1000);
End;

End; (of Case)
BuildStatusLine;
End; ?of Handle_Alt_Key}

* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)

296



(******************** Continue Edwards Excerpt ********************)

Procedure TTY(Ansi:Boolean);
(This procedure provides basic teletype emulation.
It suppresses NULs and converts GS into a non-destructive backspace}

Const AnsiInit:Array [0..8] of Char = (#27,'[',°3",'7',*; , '4','0',

Colors:Array [0..7J of Char =

Var Ch:Char;
I:Integer;
Regs:Registers;

Procedure WriteLF;
Begin
If not Ansi then

Writeln
else if WhereY >= 24 then

Begin
Regs. AX:=$0601;
Regs. CX:=$0000;
Regs. DX:=$174F;
Regs.BH:=Background shl 4 + Foreground;
Intr($10,Dos. Registers(Regs));
GotoXY(1,24);
End

else
Begin
Regs. AH:=2;
Regs. DL: =LF
MSDos(Dos.Registers(Regs));
End;

End; (of WriteLF}

Procedure Writeit(Ch:Char);
Begin
If Ansi then

Begin
Regs. AH:=2;
Regs.DL:=Byte(Ch);
MSDos(Dos. Registers(Regs));
If WhereY > 24 then WriteLF;
End

else
Write(Ch);

End; (of Writeit]

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

****************** Continue Edwa.rds Excerpt *****************

297



(******************** Continue Edwards Excerpt ********************)

Begin
If OpenWindow(l,1,80,24,0,'') = 0 then; (Save existing screen]
BuildStatusLine;
If Ansi then Begin

Regs. AK:=9;
Regs.DS:=Seg(Ansi_Init);
Regs.DX:=Ofs(Ansi_Init);
AnsiInit[3]:=Colors[Foreground];
AnsiInit[6]:=Colors[Background];
MSDos(Dos. Registers(Regs));

End;
ClrScr;
Repeat Begin

Ch:=Check_Auxport;
Case Byte(Ch) of

NUL: ; UThrow it away)
G: Begin {Non-destructive backspace}

If WhereX > 1 then
GotoXY(WhereX-1,WhereY)

else if WhereY > 1 then
GotoXY(80,WhereY-1)

else
GotoXY(80,24);

End;
LF: WriteLF;
Else Begin

Writeit(Ch);

End;
End; -of Case.

!:=CheckKeyboard;
if I > 0 then

If Lo(1) = 0 then
Handle_Alt_Key(Hi(I))

else
Begin
Ch:=Char(Lo(I));
RS232_Out(Ch);
If Echo then

Begin
Writeit (Ch);

If Ch = Char(CR) then
WriteLF;

If Print then
Begin

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1987 Sybex, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)

298



(******************** Continue Edwards Excerpt *********************

Write(LST,Ch);
If Ch = Char(CR) then

Write(LST,Char(LF));End;
End;

End;

End

Until EndEmulator;

If Ansi then

Begin

Regs.AH:=9;

Regs. DS:=Seg(Ansi_Init);
Regs.DX:=Ofs(Ansi_Init);
Ansi Init[3]:=Colors[LightGray];

AnsiInit[6]:=Colors[BlackJ;

MSDos(Dos. Registers(Regs));

End;
If CloseWindow then;

End; {of TTY}

The outer block of Distrib. It performs all necessary initialization

and presents the user with a list of terminal emulators from which to

select]

Vat I:Integer;

status : result;

commandtail : string:

Begir,
GetDir(O,Current_Path); (* save current directory for restoration *)

initWindow_Info;
If OpenWindow(l,1,80,25,0,'-) = 0 then;
Support. Initialize;
IF FaramCourt > 0 THEN BEGIN
commandtail := F'aramStr (l);
BumpStrUp ( commandtail );

END;
IF ( FaramCount > 0 ) AND ( command-tail = 'SERVER')

OR ( ParamCount = 0 ) THEN

REPEAT
status := Process_command;

UNTIL C status = Txkeypressed ) OR ( status = Rxkeypressed

(* Reprinted with extensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 1997 Sybe':, Inc. All rights reserved.

********************* Continue Edwards Excerpt ********************)

299



(******************** Continue Edwards Excerpt ********************)

ELSE BEGIN { Master or maintenance function }
EndEmulator:=False;
Emulator:='ANSI';
TTY(True);

END;
Repeat
until CloseWindow; { Close out all windows }
System.ChDir(CurrentPath); (* restore the previous directory *)
End.

(* Reprinted witth e;xtensive modifications from Advanced Techniques in
Turbo Pascal by Charles Edwards, by permission of Sybex, Inc.
Copyright 193" Sytex, Inc. All rights reserved.

*********************** Ent Edwards Excerpt ************************

X00



APPENDIX AB

CONFIGURATION FILE STRUCTURE

A. DISTRIB.CFG FILE STRUCTURE

This is the data structure recorded in the DISTRIB.CFG file when a

configuration is saved. This structure can be accessed from the
Distrib program main menu by pressing the special key combination
Alt-C, for Update Config File.

1. Data Structure for the Default Configuration

This is the date structure in the Support Unit that is
rezorded it variable Current of type DefaultType.

Const Defaults : Default_Type =
(Default Name : 'DISTRIB.CFG'; The file name to

DefaultCon : 1; The default communications
port

Default Modem : 2; The default modem port
Default-Phone : 555-1212';
Default Speed : B9600; The default comm port

speed
Default Parity : None; The default comm port

perit,;
De4aultLength : 8; The default comm port
DefaultStop : 1: The default comm port
Default-Echo:False; Enable Half Duplex
DefaultTextcolor : LightGray; The default text

eco 0
DefaultMenucolor:Green; The default menu color
DefaultBackcolor : B1ack; The default background

col o
DeaultPrefix:'ATDT9,,9,,'; The default modem

dialing pre4 i..
DefaultDelay':30); The default delay to wait for

connect i or

-, 01



APPENDIX AC

DOCUPENTATION FOR ZCOPY PRM

This is the documentation for the Zcopy program used for file
transfer (Flanders, 1989, pp. 251 - 282).

ZCOPY.COM
Command

Bob Flanders
1989 No. 4 (Utilities)

Purpose: Transfers files at high speed, via a serial link, between
machines that do not share a common disk format.

Format: ZCOFY source [target] [/w][/n][/u][/o][/a][/p][/d]

Remarks: The two machines must be IBM compatible and must be connected
by a standard "null modem" cable. ZCOPY is executed, with appropriate
parameters, on both machines; a 30-second (default) connect timeout is
provided.

On the sending machine both a source (filename plus any needed
drive and path) and a target (COMI or COM2) must be specified. ZCOPY
supports the * and 7 DOS filename "wildcards," but It does not permit
renaming files during transfer.
Or the receiving machine the source is C _;l or COM2, and the target, if
specified, must be a directory path. (Any needed subdirectories must
be created on the receiving machine before using ZCOF'Y.)

The optional 1/w and /n switches operate before connection is
established, and sc are entered on the ZCOPY command line of each
machine. The /w parameter prolongs the default connection timeout
indefinitely; it can be cancelled with Ctrl-Break. The /n parameter

sets the highest bit-per-second (bps) rate at which ZCOPY will attempt
to transfer data. 'f used, it must be the sam on both machines. The
default is /1 (115 k:bps). Other acceptable values are /2 through /6
(57.6 kbps, 78.4 kbps, 19.2 kbps, 9600 kbps, and 48X0 kbps,
respectively). If ZCOPY cannot maintain error-free transfer at a given
transfer rate, it automatically steps down to the next lower speed.

The other optional parameters may be entered on either machine's
ZCO"Y command line. The /u (Update) switch permits overwriting
same-name files on the receiving machine without operator confirmation



if the source file is more recent. The /o (Overwrite) switch
suppresses the confirmation prompt for all files. By default, when
ZCOPY receives a disk-full signal, before aborting it tries to find a
smaller selected source file that will fit on the receiving disk. The
Ia (Abort on Full) aborts at the first disk-full indication. The /p
(PaL'se) switch creates a pause before the transfer operation begins
after the connection between machines has been made.



LIST OF REFERENCES

1. Borland International Inc., Turbo Pascal Owner's Handbook Version
4.0, 1967.

2. de Boer, R., <reino@euraivl.uucp>, info-pascal-@vim.brl.mil
message, Subject: Serial Unit in TP4, Message-ID:
<797@euraivl.uucp>, 15 Nov 88 14:17:15 GMT.

3. Defenbaugh, G., "Parents, Children, Redirection, and Piping with

DOS Functions 45H and 46H," Proqrammer's Journal, v. 6,
November/December 1986.

4. Duntemann, J., "TURBO Pascal at 4," Turbo Technix, v. 1,
November/December 1987.

5. Edwards, C. C., Advanced Techniques in Turbo Pascal, Sybex, Inc.,
1967.

6. Flanders, R., "File Transfers Fast and Easy," PC Magazine, v. 8,
28 February 1989.

7. Greco, F.D., "Redirection, or 'They Went That-a-way'", Programmer's
Journal, v. 7, January/February, 1987.

S. Greenberg, R.M., "Keeping Up With the Real World: Speedy Serial
I/O Processing," Microsoft Journal, v. 2, July 1987.

9. Greenberg, R.M., "TSRCOMM, a Replacement for Interrupt 14", source
listing, copyright 1987, Ross M. Greenberg.

10. Hall, W.V., "When Turbo Isn't Enough," in Shammas, N.C., Turbo
Pascal Toolbook, M & T Publishing, Inc., 1986.

11. Hartman, R.L., and Yasinsac, A.F., Janus/Ada Implementation of a
Star Cluster Network of Personal Computers With Interface to an

Ethernet LAN Allowing Access to DDN Resources, M. S. Thesis, Naval
ostgraduate School, Monterey, California, June 1986.

12. Kimurm, N., <abcscnuk@csuna.uucp>, info-pascal-@vim.brl.mil
message, Subject: Re: TP4.0 Aux Problem, Message-ID:
<176@csuna.uucp>, 17 Nov 88 10:20:54 GMT.

i7. Krantz, D., "Christensen Protocols in C," Dr. Dobb's Journal,
v. C, June 1985.

1z. MacLennar, B.2., "rinciples of Programming Languages, 2nd. ed., CPS
College Publishing, 1927.

304



15. Mefford, M.J., "Running Programs Painlessly," PC Magazine, v. 7,
16 February, 1988.

16. Microsoft Corporation, MS-DOS Version 3 Programmer's Utility Pack
MS-DOS Reference Guide, v. 1, Zenith Data Systems Corporation,
1986.

17. Microsoft Corporation, Microsoft MS-DOS Version 3.21 User's Guide,
Zenith Data Systems Corporation, 1987.

18. Norton, F., The Peter Norton Programmer's Guide to the IBM PC,
Microsoft Press, 1985

19. Prosise, J., " Instant Access to Directories," PC Magazine, v. 6,
14 April, 1988.

20. RR Software, Inc., JANUS/Ada Package User manuals, 8086 Version 3.2
March 1983, RR Software, 1983

21. Simrin, S., The Waite Group's MS-DOS Bible, 2nd, ed., Howard W.
Sams & Company, 1988.

22 Swar, T., Mastering Turbo Pascal Files, Howard W. Sams & Company,
1987.

_. Trimble, R., <reid@hpmtl,.hp.com', info-pascal@vim.brl.mil message

SubjeCt: Re: xmodeT help needed, Message-ID:
K5430002@hpmtl..HF.COM>, 23 Feb 87 21:03:55 GMT.

24. Works, T.V.. JANUS!ADA Software Implementation of a Star Cluster
Looe2 Area Network of Personal Computers, Master's Thesis, Naval
Postoraduate School, Monterey, California, December 1986.

I0



INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Department Chairman, Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Computer Technclogy Proqrams 1
Code 37
Naval Postgraduate School
Monterey, California 93943-5000

. Professor Uno Kodres, Code 52KR 9
Department o4 Computer Science
Naval Postgraduate School
Monterey, C 'ifornia 93943-5000

6. Mr. Neisor! C. Ard 4
916 Heimsdaie Court
Chesapeake, VA 27 20

306


